Question
Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles
Prove that cot 4x (sin 5x+sin 3x)=cot x (sin 5x-sin 3x)
Answer
L.H.S = cot 4x (sin 5x+sin 3x)
=sin4xcos.4x[2sin(25x+3x)cos(25x−3x)]
[∵sinA+sinB=2sin(2A+B)cos(2A−B)]
=sin4xcos.4x[2sin4xcosx]
= 2 cos 4x cos x
R.H.S. = cot x (sin 5x-sin 3x)
=cosxcos.x[2cos(25x+3x)cos(25x−3x)]
[∵sinA+sinB=2sin(2A+B)cos(2A−B)]
=sinxcos.x[2cos4xsinx]
= 2 cos 4x. cos x
L.H.S. = R.H.S.