Solveeit Logo

Question

Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles

Prove that cot 4x (sin 5x+sin 3x)=cot x (sin 5x-sin 3x)

Answer

L.H.S = cot 4x (sin 5x+sin 3x)

=cos.4xsin4x[2sin(5x+3x2)cos(5x3x2)]=\frac{cos\\.4x}{sin\,4x}[2\,sin(\frac{5x+3x}{2})cos(\frac{5x-3x}{2})]

[sinA+sinB=2sin(A+B2)cos(AB2)][∵sin\,A+sin\,B=2\,sin(\frac{A+B}{2})cos(\frac{A-B}{2})]

=cos.4xsin4x[2sin4xcosx]=\frac{cos\\.4x}{sin\,4x}[2\,sin\,4x\,cos\,x]

= 2 cos 4x cos x

R.H.S. = cot x (sin 5x-sin 3x)

=cos.xcosx[2cos(5x+3x2)cos(5x3x2)]=\frac{cos\\.x}{cos\,x}[2\,cos(\frac{5x+3x}{2})cos(\frac{5x-3x}{2})]

[sinA+sinB=2sin(A+B2)cos(AB2)][∵sin\,A+sin\,B=2\,sin(\frac{A+B}{2})cos(\frac{A-B}{2})]

=cos.xsinx[2cos4xsinx]=\frac{cos\\.x}{sin\,x}[2\,cos\,4x\,sin\,x]

= 2 cos 4x. cos x

L.H.S. = R.H.S.