Question
Question: Prove that \[cosec\left[ {{{\tan }^{ - 1}}\left\\{ {\cos \left\\{ {{{\cot }^{ - 1}}\left\\{ {\sec \l...
Prove that cosec\left[ {{{\tan }^{ - 1}}\left\\{ {\cos \left\\{ {{{\cot }^{ - 1}}\left\\{ {\sec \left( {{{\sin }^{ - 1}}a} \right)} \right\\}} \right\\}} \right\\}} \right] = \sqrt {3 - {a^2}} where 0<a<1.
Solution
In this question, we have to verify the given trigonometric equation of inverse trigonometric ratio. We will first proceed with LHS and solve it. We proceed by assuming sin−1a=x and then take sine both side and use the fact sin(sin−1a)=a to get a=sinx. Now we find the value of other T-ratio as required and put it back into LHS. We will proceed in a similar manner to get the required RHS.
Complete answer:
The given question is based on the inverse trigonometry ratio of angles. The inverse trigonometry ratio is the inverse of trigonometric ratio sine, cosine, tangent, cosecant, secant and cotangent. For example: If sin a = x then the inverse trigonometric ratio is written as sin−1x=a.
Consider the given question,
LHS = cosec\left[ {{{\tan }^{ - 1}}\left\\{ {\cos \left\\{ {{{\cot }^{ - 1}}\left\\{ {\sec \left( {{{\sin }^{ - 1}}a} \right)} \right\\}} \right\\}} \right\\}} \right]
Let us consider, sin−1a=x
Taking sine both side we get,
sin(sin−1a)=sinx
We know that sin(sin−1a)=a
∴a=sinx
We find the value of secx using sin a = x.
Hence , secx=1−a21
⇒x=sec−11−a21
Putting sin−1a=x=sec−11−a21 in LHS. we have,
LHS = cosec\left[ {{{\tan }^{ - 1}}\left\\{ {\cos \left\\{ {{{\cot }^{ - 1}}\left\\{ {\sec \left( {{{\sec }^{ - 1}}\dfrac{1}{{\sqrt {1 - {a^2}} }}} \right)} \right\\}} \right\\}} \right\\}} \right]
Now we know that the value of sec(sec−11−a21)=1−a21
From LHS, we have
LHS = cosec\left[ {{{\tan }^{ - 1}}\left\\{ {\cos \left\\{ {{{\cot }^{ - 1}}\left\\{ {\dfrac{1}{{\sqrt {1 - {a^2}} }}} \right\\}} \right\\}} \right\\}} \right]
Now, consider y = {\cot ^{ - 1}}\left\\{ {\dfrac{1}{{\sqrt {1 - {a^2}} }}} \right\\}
Again Talking cot both side we have
\cot y = \cot \left( {{{\cot }^{ - 1}}\left\\{ {\dfrac{1}{{\sqrt {1 - {a^2}} }}} \right\\}} \right)
We know that, \cot \left\\{ {{{\cot }^{ - 1}}\left\\{ {\dfrac{1}{{\sqrt {1 - {a^2}} }}} \right\\}} \right\\} = \dfrac{1}{{\sqrt {1 - {a^2}} }}
Hence coty=1−a21
Using coty=1−a21 to find the value of cosine, we have
cosy=2−a21
⇒y=cos−12−a21
Putting {\cot ^{ - 1}}\left\\{ {\dfrac{1}{{\sqrt {1 - {a^2}} }}} \right\\} = y = {\cos ^{ - 1}}\dfrac{1}{{\sqrt {2 - {a^2}} }} in LHS we have,
LHS = cosec\left[ {{{\tan }^{ - 1}}\left\\{ {\cos \left\\{ {{{\cos }^{ - 1}}\dfrac{1}{{\sqrt {2 - {a^2}} }}} \right\\}} \right\\}} \right]
We know that, \cos \left\\{ {{{\cos }^{ - 1}}\dfrac{1}{{\sqrt {2 - {a^2}} }}} \right\\} = \dfrac{1}{{\sqrt {2 - {a^2}} }}, we have
LHS = cosec\left[ {{{\tan }^{ - 1}}\left\\{ {\dfrac{1}{{\sqrt {2 - {a^2}} }}} \right\\}} \right]
Again consider, z = {\tan ^{ - 1}}\left\\{ {\dfrac{1}{{\sqrt {2 - {a^2}} }}} \right\\}
Taking tangent both side we have,
\tan z = \tan \left\\{ {{{\tan }^{ - 1}}\left\\{ {\dfrac{1}{{\sqrt {2 - {a^2}} }}} \right\\}} \right\\} = \dfrac{1}{{\sqrt {2 - {a^2}} }}
Therefore, cosecz=3−a2
⇒z=cosec−13−a2
Putting {\tan ^{ - 1}}\left\\{ {\dfrac{1}{{\sqrt {2 - {a^2}} }}} \right\\} = z = \cos e{c^{ - 1}}\sqrt {3 - {a^2}} in LHS we have
LHS = cosec\left[ {{{\tan }^{ - 1}}\left\\{ {\dfrac{1}{{\sqrt {2 - {a^2}} }}} \right\\}} \right]
LHS=cosec[cosec−13−a2]
On solving, we have
LHS=3−a2
Therefore, LHS =RHS
Hence proved. cosec\left[ {{{\tan }^{ - 1}}\left\\{ {\cos \left\\{ {{{\cot }^{ - 1}}\left\\{ {\sec \left( {{{\sin }^{ - 1}}a} \right)} \right\\}} \right\\}} \right\\}} \right] = \sqrt {3 - {a^2}}
Note:
To find the value of any T-Ratio from any T-Ratio we use Pythagorean Theorem.
For example, Let sin x =a and we have to find the value of tanx.
We proceed as follow:
sinx=hp=1x , Where p is perpendicular and h is hypotenuse.
Hence p=x and h=1.
From Pythagorean Theorem, we have
b=h2−p2 Where b is base .
Hence b=12−x2=1−x2
Now we find the value of tangent as follow,
tanx=bp=1−x2x.
Similarly we can find any other T-Ratio.