Question
Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles
Prove that cos2 2x-cos2 6x = sin 4x sin 8x
Answer
It is known that
2cosA+cosB=2cos(2A+B)cos(2A−B),cosA−cosB=2sin(2A+B)sin(2A−B)
∴L.H.S. = cos2 2x-cos2 6x
= (cos 2x +cos 6x) (cos 2x-6x)
=[2cos(22x+6x)cos(22x−6x)][2cos(22x+6x)sin(22x−6x)]
= [2 cos 4x cos (-2x)] [-2 sin 4x (-sin 2x)]
= (2 sin 4x cos 4x) (2 sin 2x cos 2x)
= sin 8x sin 4x
= R.H.S