Question
Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles
Prove that (cosx+cosy)2+(sinx–siny)2=4cos22x+y
Answer
L.H.S. = (cos x+ cos y)2+(sin x-sin y)2
=cos2x+cos2y+2cosx cosy+sin2 x+sin2 y-2 sinx sin y
=(cos2x+sin2x)+(cos2y+sin2y)+2(cosx cosy-sinx siny)
=1+1+2 cos(x+y) [cos(A+B)=(cos A cosB-sin A sin B)]
=2+2 cos(x+y)
=2[1+cos(x+y)]
=2[1+2cos2(2x+y−1][cos2A=2cos2A−1]
=4cos2(2x+y)=R.H.S.