Question
Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles
Prove that (cosx−cosy)2+(sinx–siny)2=4sin22x−y
Answer
L.H.S. = (cos x+ cos y)2+(sin x-sin y)2
=cos2x+cos2y-2cos x cosy+sin2 x+sin2 y-2 sin x sin y
=(cos2x+sin2x)+(cos2y+sin2y)-2[cos x cos y+sin x sin y]
=1+1-2 [cos(x-y)] [cos(A-B)= cos A cosB+sin A sin B]
=2[1-cos(x-y)]
=2[1−1−2sin2(2x−y)][cos2A=1−2sin2A]
=4cos2(2x−y)=R.H.S.