Solveeit Logo

Question

Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles

Prove that (cosxcosy)2+(sinxsiny)2=4sin2xy2(cos\,x-cos\, y)^2 + (sin\,x – sin\,y)^2 = 4sin^2 \frac{x-y}{2}

Answer

L.H.S. = (cos x+ cos y)2+(sin x-sin y)2

=cos2x+cos2y-2cos x cosy+sin2 x+sin2 y-2 sin x sin y

=(cos2x+sin2x)+(cos2y+sin2y)-2[cos x cos y+sin x sin y]

=1+1-2 [cos(x-y)] [cos(A-B)= cos A cosB+sin A sin B]

=2[1-cos(x-y)]

=2[112sin2(xy2)][cos2A=12sin2A]=2[1-\\{1-2 sin^2(\frac{x-y}{2})\\}]\,\,\,[cos2A=1-2sin^2 A]

=4cos2(xy2)=R.H.S.=4cos^2(\frac{x-y}{2})=R.H.S.