Solveeit Logo

Question

Question: Prove that: \({(\cos x - \cos y)^2} + {(\sin x - \sin y)^2} = 4{\sin ^2}\left( {\dfrac{{x - y}}{2}...

Prove that:
(cosxcosy)2+(sinxsiny)2=4sin2(xy2){(\cos x - \cos y)^2} + {(\sin x - \sin y)^2} = 4{\sin ^2}\left( {\dfrac{{x - y}}{2}} \right)

Explanation

Solution

For a question like this we approach the solution by simplifying any one side and proving it equal to the other side, here also we’ll simplify the left-hand side using some trigonometric formulas like
1cos2θ=2cos2θ1 - \cos 2\theta = 2{\cos ^2}\theta
cosAcosB+sinAsinB=cos(AB)\cos A\cos B + \sin A\sin B = \cos (A - B)
cos2θ+sin2θ=1{\cos ^2}\theta + {\sin ^2}\theta = 1
We simplify in such a manner that it results in equivalent value to the other side expression.

Complete step by step Answer:

Given data:(cosxcosy)2+(sinxsiny)2=4sin2(xy2){(\cos x - \cos y)^2} + {(\sin x - \sin y)^2} = 4{\sin ^2}\left( {\dfrac{{x - y}}{2}} \right)
Taking the left-hand side
(cosxcosy)2+(sinxsiny)2\Rightarrow {(\cos x - \cos y)^2} + {(\sin x - \sin y)^2}
Using (ab)2=a2+b22ab{(a - b)^2} = {a^2} + {b^2} - 2ab,
cos2x+cos2y2cosxcosy+sin2x+sin2y2sinxsiny\Rightarrow {\cos ^2}x + {\cos ^2}y - 2\cos x\cos y + {\sin ^2}x + {\sin ^2}y - 2\sin x\sin y
On rearranging we get,
cos2x+sin2x+cos2y+sin2x2cosxcosy2sinxsiny\Rightarrow {\cos ^2}x + {\sin ^2}x + {\cos ^2}y + {\sin ^2}x - 2\cos x\cos y - 2\sin x\sin y
Now, using cos2θ+sin2θ=1co{s^2}\theta + {\sin ^2}\theta = 1, we get,
1+12cosxcosy2sinxsiny\Rightarrow 1 + 1 - 2\cos x\cos y - 2\sin x\sin y
On simplification we get,
22cosxcosy2sinxsiny\Rightarrow 2 - 2\cos x\cos y - 2\sin x\sin y
From the last two terms,
22(cosxcosy+sinxsiny)\Rightarrow 2 - 2(\cos x\cos y + \sin x\sin y)
Using cosAcosB+sinAsinB=cos(AB)\cos A\cos B + \sin A\sin B = \cos (A - B), we get,
22cos(xy)\Rightarrow 2 - 2\cos (x - y)
Taking 2 common,
2[1cos(xy)]\Rightarrow 2[1 - \cos (x - y)]
Now, using formula 1cos2θ=2cos2θ1 - \cos 2\theta = 2{\cos ^2}\theta , we get,
2[2cos2(xy2)]\Rightarrow 2\left[ {2{{\cos }^2}\left( {\dfrac{{x - y}}{2}} \right)} \right]
Now, simplifying the brackets
4cos2(xy2) \Rightarrow 4{\cos ^2}\left( {\dfrac{{x - y}}{2}} \right), which is equal to the right-hand side in the given equation
Since, Left-hand side=right-hand side
We have proved the given equation

Note: An alternative method for the solution of the given question can be
This time we’ll simplify the term in the right-hand side and will prove it equal to the term in the left-hand side
4cos2(xy2)\Rightarrow 4{\cos ^2}\left( {\dfrac{{x - y}}{2}} \right)
Using the formula,2cos2θ=1cos2θ2{\cos ^2}\theta = 1 - \cos 2\theta
2[1cos(xy)]\Rightarrow 2[1 - \cos (x - y)]
Now, using cos(AB)=cosAcosB+sinAsinB\cos (A - B) = \cos A\cos B + \sin A\sin B
2[1(cosxcosy+sinxsiny)]\Rightarrow 2[1 - (\cos x\cos y + \sin x\sin y)]
On simplifying the brackets
22(cosxcosy+sinxsiny)\Rightarrow 2 - 2(\cos x\cos y + \sin x\sin y)
22cosxcosy2sinxsiny\Rightarrow 2 - 2\cos x\cos y - 2\sin x\sin y
1+12cosxcosy2sinxsiny\Rightarrow 1 + 1 - 2\cos x\cos y - 2\sin x\sin y
Now, we know that cos2θ+sin2θ=1co{s^2}\theta + {\sin ^2}\theta = 1
therefore substituting 1=cos2x+sin2x1 = co{s^2}x + {\sin ^2}xand 1=cos2y+sin2y1 = co{s^2}y + {\sin ^2}y
cos2x+sin2x+cos2y+sin2y2cosxcosy2sinxsiny\Rightarrow {\cos ^2}x + {\sin ^2}x + {\cos ^2}y + {\sin ^2}y - 2\cos x\cos y - 2\sin x\sin y
cos2x+cos2y2cosxcosy+sin2x+sin2y2sinxsiny\Rightarrow {\cos ^2}x + {\cos ^2}y - 2\cos x\cos y + {\sin ^2}x + {\sin ^2}y - 2\sin x\sin y
Now, using the formula a2+b22ab=(ab)2{a^2} + {b^2} - 2ab = {(a - b)^2}
(cosxcosy)2+(sinxsiny)2\Rightarrow {\left( {\cos x - \cos y} \right)^2} + {\left( {\sin x - \sin y} \right)^2}which is equal to the left-hand side in the given equation
Since, Left-hand side=right-hand side
We have proved the given equation