Solveeit Logo

Question

Question: Prove that \(\cos x + \cos 3x + ... + \cos \left( {2n - 1} \right)x = \dfrac{{\sin 2nx}}{{2\sin x}}\...

Prove that cosx+cos3x+...+cos(2n1)x=sin2nx2sinx\cos x + \cos 3x + ... + \cos \left( {2n - 1} \right)x = \dfrac{{\sin 2nx}}{{2\sin x}}, xKx \ne K, KIK \in I and then deduce that sinx+3sin3x+...+(2n1)sin(2n1)x=[(2n+1)sin(2n1)x(2n1)sin(2n+1)x]4sin2x\sin x + 3\sin 3x + ... + \left( {2n - 1} \right)\sin \left( {2n - 1} \right)x = \dfrac{{\left[ {\left( {2n + 1} \right)\sin \left( {2n - 1} \right)x - \left( {2n - 1} \right)\sin \left( {2n + 1} \right)x} \right] }}{{4{{\sin }^2}x}}.

Explanation

Solution

Hint : We have to prove that the given trigonometric series is equal to the expression given in the RHS. We can multiply the numerator and denominator in the LHS by 2sinx2\sin x and then use trigonometric identities to prove this. Further we have to deduce another identity from this series. For this we can simply differentiate the given series.

Complete step by step solution:
We have to prove that cosx+cos3x+...+cos(2n1)x=sin2nx2sinx\cos x + \cos 3x + ... + \cos \left( {2n - 1} \right)x = \dfrac{{\sin 2nx}}{{2\sin x}}. Here xx is not an integer.
We can start with the LHS and simplify it such that we arrive at the expression similar to that given in the RHS.
We can multiply the numerator and denominator by 2sinx2\sin x in the LHS to get,
2sinx×[cosx+cos3x+...+cos(2n1)x]2sinx =2sinxcosx+2sinxcos3x+...+2sinxcos(2n1)x2sinx   \dfrac{{2\sin x \times \left[ {\cos x + \cos 3x + ... + \cos \left( {2n - 1} \right)x} \right] }}{{2\sin x}} \\\ = \dfrac{{2\sin x\cos x + 2\sin x\cos 3x + ... + 2\sin x\cos \left( {2n - 1} \right)x}}{{2\sin x}} \;
We can use the trigonometric identity 2sinAcosB=sin(A+B)+sin(AB)2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)
Therefore we get,
(sin(x+x)+sin(xx))+(sin(x+3x)+sin(x3x))+...+(sin(x+(2n1)x)+sin(x(2n1)x))2sinx =(sin2x0)+(sin4xsin2x)+(sin6xsin4x)...+(sin2nxsin(2n2)x)2sinx   \dfrac{{\left( {\sin \left( {x + x} \right) + \sin \left( {x - x} \right)} \right) + \left( {\sin \left( {x + 3x} \right) + \sin \left( {x - 3x} \right)} \right) + ... + \left( {\sin \left( {x + \left( {2n - 1} \right)x} \right) + \sin \left( {x - \left( {2n - 1} \right)x} \right)} \right)}}{{2\sin x}} \\\ = \dfrac{{\left( {\sin 2x - 0} \right) + \left( {\sin 4x - \sin 2x} \right) + \left( {\sin 6x - \sin 4x} \right)... + \left( {\sin 2nx - \sin \left( {2n - 2} \right)x} \right)}}{{2\sin x}} \;
We can observe that the first term in each bracket is cancelled out by the second term of the consecutive bracket in the numerator. When we cancel all such terms we will be left with,
=sin2nx2sinx= \dfrac{{\sin 2nx}}{{2\sin x}}
This is equal to the required RHS.
Hence, we proved cosx+cos3x+...+cos(2n1)x=sin2nx2sinx\cos x + \cos 3x + ... + \cos \left( {2n - 1} \right)x = \dfrac{{\sin 2nx}}{{2\sin x}}.
Now for the second part of the question we will differentiate both the sides with respect to xx.

d[cosx+cos3x+...+cos(2n1)x]dx=d[sin2nx2sinx]dx d(cosx)dx+d(cos3x)dx+...+d(cos(2n1)x)dx=2sinxd(sin2nx)dxsin2nxd(2sinx)dx(2sinx)2 sinx3sin3x...(2n1)sin(2n1)x=4nsinxcos2nx2sin2nxcosx4sin2x sinx+3sin3x+...+(2n1)sin(2n1)x=2sin2nxcosx4nsinxcos2nx4sin2x sinx+3sin3x+...+(2n1)sin(2n1)x=(sin(2nx+x)+sin(2nxx))2n(sin(x+2nx)+sin(x2nx))4sin2x sinx+3sin3x+...+(2n1)sin(2n1)x=sin(2n+1)x+sin(2n1)x2nsin(2n+1)x+2nsin(2n1)x4sin2x sinx+3sin3x+...+(2n1)sin(2n1)x=(2n+1)sin(2n1)x(2n1)sin(2n+1)x4sin2x   \Rightarrow \dfrac{{d\left[ {\cos x + \cos 3x + ... + \cos \left( {2n - 1} \right)x} \right] }}{{dx}} = \dfrac{{d\left[ {\dfrac{{\sin 2nx}}{{2\sin x}}} \right] }}{{dx}} \\\ \Rightarrow \dfrac{{d\left( {\cos x} \right)}}{{dx}} + \dfrac{{d\left( {\cos 3x} \right)}}{{dx}} + ... + \dfrac{{d\left( {\cos \left( {2n - 1} \right)x} \right)}}{{dx}} = \dfrac{{2\sin x\dfrac{{d\left( {\sin 2nx} \right)}}{{dx}} - \sin 2nx\dfrac{{d\left( {2\sin x} \right)}}{{dx}}}}{{{{\left( {2\sin x} \right)}^2}}} \\\ \Rightarrow - \sin x - 3\sin 3x - ... - \left( {2n - 1} \right)\sin \left( {2n - 1} \right)x = \dfrac{{4n\sin x\cos 2nx - 2\sin 2nx\cos x}}{{4{{\sin }^2}x}} \\\ \Rightarrow \sin x + 3\sin 3x + ... + \left( {2n - 1} \right)\sin \left( {2n - 1} \right)x = \dfrac{{2\sin 2nx\cos x - 4n\sin x\cos 2nx}}{{4{{\sin }^2}x}} \\\ \Rightarrow \sin x + 3\sin 3x + ... + \left( {2n - 1} \right)\sin \left( {2n - 1} \right)x = \dfrac{{\left( {\sin \left( {2nx + x} \right) + \sin \left( {2nx - x} \right)} \right) - 2n\left( {\sin \left( {x + 2nx} \right) + \sin \left( {x - 2nx} \right)} \right)}}{{4{{\sin }^2}x}} \\\ \Rightarrow \sin x + 3\sin 3x + ... + \left( {2n - 1} \right)\sin \left( {2n - 1} \right)x = \dfrac{{\sin \left( {2n + 1} \right)x + \sin \left( {2n - 1} \right)x - 2n\sin \left( {2n + 1} \right)x + 2n\sin \left( {2n - 1} \right)x}}{{4{{\sin }^2}x}} \\\ \Rightarrow \sin x + 3\sin 3x + ... + \left( {2n - 1} \right)\sin \left( {2n - 1} \right)x = \dfrac{{\left( {2n + 1} \right)\sin \left( {2n - 1} \right)x - \left( {2n - 1} \right)\sin \left( {2n + 1} \right)x}}{{4{{\sin }^2}x}} \;

Here we can see that LHS and RHS are both the same as given in the question.
Hence we got the required identity.

Note : There may be other methods to solve this problem like using exponential form of the complex number. Using complex numbers for such questions is a common way to solve the problem but this problem was easily solved by using trigonometric identity. We have to practice more and more problems in solving series to be able to have the aptitude to guess the right approach.