Solveeit Logo

Question

Question: Prove that: \(\cos \theta + \sin \left( {{{270}^ \circ } + \theta } \right) - \sin \left( {{{270}^...

Prove that:
cosθ+sin(270+θ)sin(270θ)+cos(180+θ)=0\cos \theta + \sin \left( {{{270}^ \circ } + \theta } \right) - \sin \left( {{{270}^ \circ } - \theta } \right) + \cos \left( {{{180}^ \circ } + \theta } \right) = 0.

Explanation

Solution

In the given equation right hand side (RHS) is zero and we have to prove that the given equation is correct. So, we need to show the LHS of the equation that is cosθ+sin(270+θ)sin(270θ)+cos(180+θ)\cos \theta + \sin \left( {{{270}^ \circ } + \theta } \right) - \sin \left( {{{270}^ \circ } - \theta } \right) + \cos \left( {{{180}^ \circ } + \theta } \right)is equal to zero. Here, we need to use some trigonometric formula to show that its value is zero that is,
(1) sin(A+B)=sinAcosB+cosAsinB\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B.
(2) sin(AB)=sinAcosBcosAsinB\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B.
(3) cos(A+B)=cosAcosBsinAsinB\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B.

Complete step-by-step answer:
Given: LHS of the equation is
\Rightarrow cosθ+sin(270+θ)sin(270θ)+cos(180+θ)\cos \theta + \sin \left( {{{270}^ \circ } + \theta } \right) - \sin \left( {{{270}^ \circ } - \theta } \right) + \cos \left( {{{180}^ \circ } + \theta } \right).
RHS of the equation is zero.
Now, we have to calculate the value of expression on the LHS of the equation.
\Rightarrow cosθ+sin(270+θ)sin(270θ)+cos(180+θ) \cos \theta + \sin \left( {{{270}^ \circ } + \theta } \right) - \sin \left( {{{270}^ \circ } - \theta } \right) + \cos \left( {{{180}^ \circ } + \theta } \right)
By using the formula,
\Rightarrow sin(A+B)=sinAcosB+cosAsinB\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B we can expand,
\Rightarrow sin(270+θ)\sin \left( {{{270}^ \circ } + \theta } \right) where,
\Rightarrow A=270A = 27{0^ \circ } and B=θB = \theta .
And similarly, we can expand,
\Rightarrow sin(270θ)\sin \left( {27{0^ \circ } - \theta } \right) by using the formula,
\Rightarrow sin(AB)=sinAcosBcosAsinB\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B, And cos(180+θ)\cos \left( {{{180}^ \circ } + \theta } \right) by using the formula,
cos(A+B)=cosAcosBsinAsinB\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B.
Then we get,
\Rightarrow cosθ+sin270cosθ+cos270sinθsin270cosθ+cos270sinθ+cos180cosθsin180sinθ. \cos \theta + \sin {270^ \circ }\cos \theta + \cos {270^ \circ }\sin \theta - \sin {270^ \circ }\cos \theta + \cos {270^ \circ }\sin \theta + \cos {180^ \circ }\cos \theta - \sin {180^ \circ }\sin \theta .
Now, putting the value of
sin270=1\sin {270^ \circ } = - 1 ,
cos270=0\cos {270^ \circ } = 0 ,
cos180=1\cos {180^ \circ } = - 1 and
sin180=0\sin {180^ \circ } = 0 in the above equation. We get,
\Rightarrow cosθ+(1)cosθ+(0)sinθ(1)cosθ+(0)sinθ+(1)cosθ(0)sinθ \cos \theta + \left( { - 1} \right)\cos \theta + \left( 0 \right)\sin \theta - \left( { - 1} \right)\cos \theta + \left( 0 \right)\sin \theta + \left( { - 1} \right)\cos \theta - \left( 0 \right)\sin \theta
cosθcosθ+cosθcosθ\Rightarrow \cos \theta - \cos \theta + \cos \theta - \cos \theta
0\Rightarrow 0
Thus, we get the left hind side of the equation is zero.

Since LHS is equal to RHS. So, the given equation is proved.

Note:

Alternative method:
If we add or subtract any angle θ\theta to/from 180{180^ \circ } and 360{360^ \circ }(angles on XX- axis) then the trigonometric function like sin\sin ,cos\cos , tan\tan etc. remain same only there is change in sign according to quadrant. That is if adding θ\theta angles goes in the third quadrant then only tanθ\tan \theta and cotθ\cot \theta are positive and others are negative. If we add or subtract any angle θ\theta from 90{90^ \circ }(angles on the YY- axis) then the trigonometric function sin\sin convert to cos\cos , tan\tan convert to cot\cot and sec\sec convert to cosec\cos ec and vice-versa. Some examples are
sin(270+θ)=cosθ sin(270θ)=cosθ cos(180+θ)=cosθ  \sin \left( {{{270}^ \circ } + \theta } \right) = - \cos \theta \\\ \sin \left( {{{270}^ \circ } - \theta } \right) = - \cos \theta \\\ \cos \left( {{{180}^ \circ } + \theta } \right) = - \cos \theta \\\
Then, putting this value we get the value of expression on the left side of the equation.