Solveeit Logo

Question

Question: Prove that \[\cos \left( {\dfrac{\pi }{6} - A} \right) \cdot \cos \left( {\dfrac{\pi }{3} + B} \righ...

Prove that cos(π6A)cos(π3+B)sin(π6A)sin(π3+B)=cos(AB)\cos \left( {\dfrac{\pi }{6} - A} \right) \cdot \cos \left( {\dfrac{\pi }{3} + B} \right) - \sin \left( {\dfrac{\pi }{6} - A} \right) \cdot \sin \left( {\dfrac{\pi }{3} + B} \right) = \cos \left( {A - B} \right)

Explanation

Solution

Here in this question, we have to prove the given trigonometric function by showing the left hand side is equal to the right hand side (i.e., L.H.S=R.H.SL.H.S = R.H.S). To solve this, we have to consider L.H.S separately and simplify by using a formula of compound angle of trigonometric ratios cos(A+B)=cosAcosBsinAsinB\cos \left( {A + B} \right) = \cos A \cdot \cos B - \sin A \cdot \sin B to get the required RHS.

Complete step by step answer:
A function of an angle expressed as the ratio of two of the sides of a right triangle that contains that angle; the sine, cosine, tangent, cotangent, secant, or cosecant known as trigonometric function Also called circular function.
Consider the given question:
Prove that
cos(π6A)cos(π3+B)sin(π6A)sin(π3+B)=sin(AB)\cos \left( {\dfrac{\pi }{6} - A} \right) \cdot \cos \left( {\dfrac{\pi }{3} + B} \right) - \sin \left( {\dfrac{\pi }{6} - A} \right) \cdot \sin \left( {\dfrac{\pi }{3} + B} \right) = \sin \left( {A - B} \right) --------(1)
Consider Left hand side of equation (1) (L.H.S)
cos(π6A)cos(π3+B)sin(π6A)sin(π3+B)\Rightarrow \,\,\,\cos \left( {\dfrac{\pi }{6} - A} \right) \cdot \cos \left( {\dfrac{\pi }{3} + B} \right) - \sin \left( {\dfrac{\pi }{6} - A} \right) \cdot \sin \left( {\dfrac{\pi }{3} + B} \right) ----(2)
Let us by the compound angles of trigonometric ratios:
The sum identity of cosine ratio is:
cos(A+B)=cosAcosBsinAsinB\cos \left( {A + B} \right) = \cos A \cdot \cos B - \sin A \cdot \sin B
On comparing the equation (2) with cosine sum identity
Where, A=(π6A)A = \left( {\dfrac{\pi }{6} - A} \right) and B=(π3+B)B = \left( {\dfrac{\pi }{3} + B} \right), then
By cosine sum identity equation (2) becomes
=cos((π6A)+(π3+B))= \cos \left( {\left( {\dfrac{\pi }{6} - A} \right) + \left( {\dfrac{\pi }{3} + B} \right)} \right)
By using a sign conversion
=cos(π6A+π3+B)= \cos \left( {\dfrac{\pi }{6} - A + \dfrac{\pi }{3} + B} \right)
=cos(π6+π3(AB))=\cos \left( {\dfrac{\pi }{6} + \dfrac{\pi }{3} - \left( {A - B} \right)} \right)
Take, 6 as LCM between π6\dfrac{\pi }{6} and π3\dfrac{\pi }{3}, then we have
=cos(π+2π6(AB))=\cos \left( {\dfrac{{\pi + 2\pi }}{6} - \left( {A - B} \right)} \right)
=cos(3π6(AB))= \cos \left( {\dfrac{{3\pi }}{6} - \left( {A - B} \right)} \right)
On simplification, we get
=cos(π2(AB))= \cos \left( {\dfrac{\pi }{2} - \left( {A - B} \right)} \right) ---- (3)
By the ASTC rule (π2θ)\left( {\dfrac{\pi }{2} - \theta } \right) belongs to the first quadrant in that all six ratios are positive and
Let us by the complementary angles of trigonometric ratios:
The angle can be written as
sin(90θ)=cosθ\sin \left( {90 - \theta } \right) = \cos \theta
cos(90θ)=sinθ\cos \left( {90 - \theta } \right) = \sin \theta
Then equation (3) becomes
sin(AB)\Rightarrow \,\,\,\sin \left( {A - B} \right)
=RHS= RHS
LHS=RHS\therefore \,\,LHS = \,\,RHS.
cos(π6A)cos(π3+B)sin(π6A)sin(π3+B)=sin(AB)\therefore \,\,\,\,\cos \left( {\dfrac{\pi }{6} - A} \right) \cdot \cos \left( {\dfrac{\pi }{3} + B} \right) - \sin \left( {\dfrac{\pi }{6} - A} \right) \cdot \sin \left( {\dfrac{\pi }{3} + B} \right) = \sin \left( {A - B} \right)
Hence, proved.

Note:
When solving the trigonometry-based questions, we have to know the definitions of six trigonometric ratios. Remember, the formula of compound angles i.e.,
cosine sum identity: cos(A+B)=cosAcosBsinAsinB\cos \left( {A + B} \right) = \cos A \cdot \cos B - \sin A \cdot \sin B and
cosine difference identity: cos(AB)=cosAcosB+sinAsinB\cos \left( {A - B} \right) = \cos A \cdot \cos B + \sin A \cdot \sin B
Sine sum identity: sin(A+B)=sinAcosB+cosAsinB\sin \left( {A + B} \right) = \sin A \cdot \cos B + \cos A \cdot \sin B
Sine difference identity: sin(AB)=sinAcosBcosAsinB\sin \left( {A - B} \right) = \sin A \cdot \cos B - \cos A \cdot \sin B
Remember, when the sum of two angles is 90{90^ \circ }, then the angles are known as complementary angles at that time the ratios will change like sincos\sin \leftrightarrow \cos , seccosec\sec \leftrightarrow cosec and tancot\tan \leftrightarrow \cot then should know the some basic formulas of trigonometry like identities, double and half angle formulas, Product to Sum Formulas and Sum to Product Form.