Solveeit Logo

Question

Question: Prove that \(\cos \left( \dfrac{3\pi }{4}+x \right)-\cos \left( \dfrac{3\pi }{4}-x \right)=-\sqrt{2}...

Prove that cos(3π4+x)cos(3π4x)=2sinx.\cos \left( \dfrac{3\pi }{4}+x \right)-\cos \left( \dfrac{3\pi }{4}-x \right)=-\sqrt{2}\sin x.

Explanation

Solution

We will use the trigonometric identity cos(x+y)=cosxcosysinxsiny\cos \left( x+y \right)=\cos x\cos y-\sin x\sin y and the trigonometric identity cos(xy)=cosxcosy+sinxsiny.\cos \left( x-y \right)=\cos x\cos y+\sin x\sin y. We know that sin(πx)=sinx.\sin \left( \pi -x \right)=\sin x. By using these trigonometric identities, we will expand the left-hand side of the given trigonometric identity.

Complete step by step solution:
Let us consider the given trigonometric identity cos(3π4+x)cos(3π4x)=2sinx.\cos \left( \dfrac{3\pi }{4}+x \right)-\cos \left( \dfrac{3\pi }{4}-x \right)=-\sqrt{2}\sin x.
We are asked to prove the identity.
For that, we will first consider the left-hand side of the given trigonometric identity. Then we will expand each term of the identity using the trigonometric identities cos(x+y)=cosxcosysinxsiny\cos \left( x+y \right)=\cos x\cos y-\sin x\sin y and cos(xy)=cosxcosy+sinxsiny.\cos \left( x-y \right)=\cos x\cos y+\sin x\sin y.
Let us consider the left-hand side of the given identity cos(3π4+x)cos(3π4x).\cos \left( \dfrac{3\pi }{4}+x \right)-\cos \left( \dfrac{3\pi }{4}-x \right).
Now, let us expand the term cos(3π4+x)\cos \left( \dfrac{3\pi }{4}+x \right) using the trigonometric identity cos(x+y)=cosxcosysinxsiny.\cos \left( x+y \right)=\cos x\cos y-\sin x\sin y.
So, we will get cos(3π4+x)=cos3π4cosxsin3π4sinx.\cos \left( \dfrac{3\pi }{4}+x \right)=\cos \dfrac{3\pi }{4}\cos x-\sin \dfrac{3\pi }{4}\sin x.
Similarly, we will expand the term cos(3π4x)\cos \left( \dfrac{3\pi }{4}-x \right) using the trigonometric identity cos(xy)=cosxcosy+sinxsiny.\cos \left( x-y \right)=\cos x\cos y+\sin x\sin y.
We will get cos(3π4x)=cos3π4cosx+sin3π4sinx.\cos \left( \dfrac{3\pi }{4}-x \right)=\cos \dfrac{3\pi }{4}\cos x+\sin \dfrac{3\pi }{4}\sin x.
Let us rewrite the left-hand side of the given identity using the expanded forms.
We will get,
cos(3π4+x)cos(3π4x)=cos3π4cosxsin3π4sinx(cos3π4cosx+sin3π4sinx).\Rightarrow \cos \left( \dfrac{3\pi }{4}+x \right)-\cos \left( \dfrac{3\pi }{4}-x \right)=\cos \dfrac{3\pi }{4}\cos x-\sin \dfrac{3\pi }{4}\sin x-\left( \cos \dfrac{3\pi }{4}\cos x+\sin \dfrac{3\pi }{4}\sin x \right).
From this, we will get the following when we open the brackets,
cos(3π4+x)cos(3π4x)=cos3π4cosxsin3π4sinxcos3π4cosxsin3π4sinx.\Rightarrow \cos \left( \dfrac{3\pi }{4}+x \right)-\cos \left( \dfrac{3\pi }{4}-x \right)=\cos \dfrac{3\pi }{4}\cos x-\sin \dfrac{3\pi }{4}\sin x-\cos \dfrac{3\pi }{4}\cos x-\sin \dfrac{3\pi }{4}\sin x.
Now, from this, we can cancel the similar terms with opposite signs.
Then as a result, we will get
cos(3π4+x)cos(3π4x)=sin3π4sinxsin3π4sinx.\Rightarrow \cos \left( \dfrac{3\pi }{4}+x \right)-\cos \left( \dfrac{3\pi }{4}-x \right)=-\sin \dfrac{3\pi }{4}\sin x-\sin \dfrac{3\pi }{4}\sin x.
And we can write this as
cos(3π4+x)cos(3π4x)=2sin3π4sinx.\Rightarrow \cos \left( \dfrac{3\pi }{4}+x \right)-\cos \left( \dfrac{3\pi }{4}-x \right)=-2\sin \dfrac{3\pi }{4}\sin x.
Now, we know that 3π4=ππ4.\dfrac{3\pi }{4}=\pi -\dfrac{\pi }{4}. Also, we know that the Sine function is positive in the second quadrant.
So, we will get sin3π4=sin(ππ4).\sin \dfrac{3\pi }{4}=\sin \left( \pi -\dfrac{\pi }{4} \right).
And, we will get sin3π4=sinπ4.\sin \dfrac{3\pi }{4}=\sin \dfrac{\pi }{4}.
Let us substitute this in the obtained equation.
We will get cos(3π4+x)cos(3π4x)=2sinπ4sinx.\cos \left( \dfrac{3\pi }{4}+x \right)-\cos \left( \dfrac{3\pi }{4}-x \right)=-2\sin \dfrac{\pi }{4}\sin x.
We know that sinπ4=12.\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}.
Therefore, we will get cos(3π4+x)cos(3π4x)=212sinx.\cos \left( \dfrac{3\pi }{4}+x \right)-\cos \left( \dfrac{3\pi }{4}-x \right)=-2\dfrac{1}{\sqrt{2}}\sin x.
We know that 2×2=2.\sqrt{2}\times \sqrt{2}=2. Therefore, 22=2.\dfrac{2}{\sqrt{2}}=\sqrt{2}.
Thus, we will get cos(3π4+x)cos(3π4x)=2sinx.\cos \left( \dfrac{3\pi }{4}+x \right)-\cos \left( \dfrac{3\pi }{4}-x \right)=-\sqrt{2}\sin x.
Hence the given identity is proved.

Note: Remember that all the trigonometric functions are positive in the first quadrant. The Sine function and thus the Cosecant function are positive in the second quadrant. The Tangent function and the Cotangent function are positive in the third quadrant. Similarly, the Cosine function and the Secant function are positive in the fourth quadrant.