Question
Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles
Prove that, cos(4π−x)cos(4π−y)−sin(4π−x)sin(4π−y)=sin(x+y)
Answer
cos(4π−x)cos(4π−y)−sin(4π−x)sin(4π−y)
=21[2cos(4π−x)cos(4π−y)+21[−2sin(4π−x)sin(4π−y)]
=21[cos(4π−x)+(4π−y)+cos(4π−x)−(4π−y)]
+21[cos(4π−x)+(4π−y)−cos+(4π−x)−(4π−y)]
[∵2cosAcosB=cos(A+B)+cos(A−B)]
[−2sinAsinB=cos(A+B)−cos(A−B)]
=2×21[cos(4π−x)+(4π−y)]
=cos[2π−(x+y)]
sin(x+y)
R.H.S