Solveeit Logo

Question

Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles

Prove that, cos(π4x)cos(π4y)sin(π4x)sin(π4y)=sin(x+y)cos(\frac{\pi}{4}-x)cos(\frac{\pi}{4}-y)-sin(\frac{\pi}{4}-x)sin(\frac{\pi}{4}-y)=sin(x+y)

Answer

cos(π4x)cos(π4y)sin(π4x)sin(π4y)cos(\frac{\pi}{4}-x)cos(\frac{\pi}{4}-y)-sin(\frac{\pi}{4}-x)sin(\frac{\pi}{4}-y)

=12[2cos(π4x)cos(π4y)+12[2sin(π4x)sin(π4y)]=\frac{1}{2}[2\,cos(\frac{\pi}{4}-x)cos(\frac{\pi}{4}-y)+\frac{1}{2}[-2sin(\frac{\pi}{4}-x)sin(\frac{\pi}{4}-y)]

=12[cos(π4x)+(π4y)+cos(π4x)(π4y)]=\frac{1}{2}[cos\\{(\frac{\pi}{4}-x)+(\frac{\pi}{4}-y)\\}+\\{cos(\frac{\pi}{4}-x)-(\frac{\pi}{4}-y)\\}]

+12[cos(π4x)+(π4y)cos+(π4x)(π4y)]+\frac{1}{2}[\,cos\\{(\frac{\pi}{4}-x)\\}+(\frac{\pi}{4}-y)-cos+\\{(\frac{\pi}{4}-x)-(\frac{\pi}{4}-y)\\}]

[2cosAcosB=cos(A+B)+cos(AB)][∵ 2cos AcosB=cos(A+B)+cos(A-B)]

[2sinAsinB=cos(A+B)cos(AB)][-2sinAsinB=cos(A+B)-cos(A-B)]

=2×12[cos(π4x)+(π4y)]=2×\frac{1}{2}[cos\\{(\frac{\pi}{4}-x)+(\frac{\pi}{4}-y)\\}]

=cos[π2(x+y)]=cos[\frac{\pi}{2}-(x+y)]

sin(x+y)sin(x+y)

R.H.SR.H.S