Solveeit Logo

Question

Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles

Prove that cos(3π4+x)cos(3π4x)=2sinxcos(\frac{3{\pi}}{4}+x)-cos(\frac{3{\pi}}{4}-x)=√2sin\,x

Answer

It is known that cosAcosB=2(A+B2).sin(AB2).cosA-cosB=-2(\frac{A+B}{2}).sin(\frac{A-B}{2}).

L.H.S.=cos(3π4x)cos(3π4x)∴L.H.S. = cos(\frac{3{\pi}}{4}-x) -cos(\frac{3{\pi}}{4}-x)

=2sin(3π4+x)+(3π4x)2.sin(3π4+x)+(3π4x)2=-2\,sin\\{\frac{\,{(\frac{3{\pi}}{4}+x})+{(\frac{3{\pi}}{4}-x)}}{2}\\}.sin\\{\frac{\,{(\frac{3{\pi}}{4}+x})+{(\frac{3{\pi}}{4}-x)}}{2}\\}

=2sin(3π4)sinx=-2\,sin(\frac{3{\pi}}{4})sin\,x

=2sin(ππ4)sinx=-2\,sin({\pi}-\frac{\pi}{4})sin\,x

=2sinπ4sinx=-2\,sin\frac{\pi}{4}sin\,x

=2×12×sinx=-2×\frac{1}{\sqrt2}×sin\,x

=2sinx=-{\sqrt2}\,sin\,x

=R.H.S=R.H.S