Question
Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles
Prove that cos(43π+x)−cos(43π−x)=√2sinx
Answer
It is known that cosA−cosB=−2(2A+B).sin(2A−B).
∴L.H.S.=cos(43π−x)−cos(43π−x)
=−2sin2(43π+x)+(43π−x).sin2(43π+x)+(43π−x)
=−2sin(43π)sinx
=−2sin(π−4π)sinx
=−2sin4πsinx
=−2×21×sinx
=−2sinx
=R.H.S