Solveeit Logo

Question

Question: Prove that: \(\cos ec\left( {\dfrac{\pi }{4} + \theta } \right)\cos ec\left( {\dfrac{\pi }{4} - \the...

Prove that: cosec(π4+θ)cosec(π4θ)=sec(π4+θ)sec(π4θ)=2sec2θ\cos ec\left( {\dfrac{\pi }{4} + \theta } \right)\cos ec\left( {\dfrac{\pi }{4} - \theta } \right) = \sec \left( {\dfrac{\pi }{4} + \theta } \right)\sec \left( {\dfrac{\pi }{4} - \theta } \right) = 2\sec 2\theta

Explanation

Solution

Before attempting this question prior knowledge of trigonometric identities is must, remember to use trigonometric identities secθ=1cosθ\sec \theta = \dfrac{1}{{\cos \theta }} use this information to approach the solution of the question.

Complete step-by-step solution:
According to the given information we have trigonometric equation cosec(π4+θ)cosec(π4θ)=sec(π4+θ)sec(π4θ)=2sec2θ\cos ec\left( {\dfrac{\pi }{4} + \theta } \right)\cos ec\left( {\dfrac{\pi }{4} - \theta } \right) = \sec \left( {\dfrac{\pi }{4} + \theta } \right)\sec \left( {\dfrac{\pi }{4} - \theta } \right) = 2\sec 2\theta to prove the L.H.S = R.H.S
Let first prove sec(π4+θ)sec(π4θ)=2sec2θ\sec \left( {\dfrac{\pi }{4} + \theta } \right)\sec \left( {\dfrac{\pi }{4} - \theta } \right) = 2\sec 2\theta here L.H.S is sec(π4+θ)sec(π4θ)\sec \left( {\dfrac{\pi }{4} + \theta } \right)\sec \left( {\dfrac{\pi }{4} - \theta } \right) and R.H.S is 2sec2θ2\sec 2\theta
Since we know that secθ=1cosθ\sec \theta = \dfrac{1}{{\cos \theta }}
Therefore sec(π4+θ)sec(π4θ)=1cos(π4+θ)cos(π4θ)\sec \left( {\dfrac{\pi }{4} + \theta } \right)\sec \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{1}{{\cos \left( {\dfrac{\pi }{4} + \theta } \right)\cos \left( {\dfrac{\pi }{4} - \theta } \right)}}
L.H.S = 1cos(π4+θ)cos(π4θ)\dfrac{1}{{\cos \left( {\dfrac{\pi }{4} + \theta } \right)\cos \left( {\dfrac{\pi }{4} - \theta } \right)}}
Multiplying and dividing by 2 we get
L.H.S = 1cos(π4+θ)cos(π4θ)×22\dfrac{1}{{\cos \left( {\dfrac{\pi }{4} + \theta } \right)\cos \left( {\dfrac{\pi }{4} - \theta } \right)}} \times \dfrac{2}{2}
L.H.S = 1cos(π4+θ)cos(π4θ)×22\dfrac{1}{{\cos \left( {\dfrac{\pi }{4} + \theta } \right)\cos \left( {\dfrac{\pi }{4} - \theta } \right)}} \times \dfrac{2}{2}
By the formula 2 Cos A Cos B = Cos (A+B) + Cos (A – B) we get
L.H.S = 2cos(π4+θ+π4θ)+cos(π4+θπ4+θ)\dfrac{2}{{\cos \left( {\dfrac{\pi }{4} + \theta + \dfrac{\pi }{4} - \theta } \right) + \cos \left( {\dfrac{\pi }{4} + \theta - \dfrac{\pi }{4} + \theta } \right)}}
L.H.S = 2cosπ2+cos2θ\dfrac{2}{{\cos \dfrac{\pi }{2} + \cos 2\theta }}
Since we know that cosπ2\cos \dfrac{\pi }{2} = 0
Therefore L.H.S = 2cos2θ\dfrac{2}{{\cos 2\theta }}
Since we know that secθ=1cosθ\sec \theta = \dfrac{1}{{\cos \theta }}
So, L.H.S = 2sec2θ2\sec 2\theta (equation 1)
So, L.H.S is equal to R.H.S
Now taking cosec(π4+θ)cosec(π4θ)\cos ec\left( {\dfrac{\pi }{4} + \theta } \right)\cos ec\left( {\dfrac{\pi }{4} - \theta } \right) as L.H.S and 2sec2θ2\sec 2\theta as R.H.S
Since we know that cosecθ=1sinθ\cos ec\theta = \dfrac{1}{{\sin \theta }}
Therefore L.H.S = cosec(π4+θ)cosec(π4θ)=1sin(π4+θ)sin(π4θ)\cos ec\left( {\dfrac{\pi }{4} + \theta } \right)\cos ec\left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{1}{{\sin \left( {\dfrac{\pi }{4} + \theta } \right)\sin \left( {\dfrac{\pi }{4} - \theta } \right)}}
Multiplying and dividing by 2 we get
L.H.S = 1sin(π4+θ)sin(π4θ)×22\dfrac{1}{{\sin \left( {\dfrac{\pi }{4} + \theta } \right)\sin \left( {\dfrac{\pi }{4} - \theta } \right)}} \times \dfrac{2}{2}
Since we know that 2 Sin A Sin B = Cos (A – B) – Cos (A + B)
Therefore L.H.S = 2cos(π4+θπ4+θ)cos(π4+θ+π4θ)\dfrac{2}{{\cos \left( {\dfrac{\pi }{4} + \theta - \dfrac{\pi }{4} + \theta } \right) - \cos \left( {\dfrac{\pi }{4} + \theta + \dfrac{\pi }{4} - \theta } \right)}}
\RightarrowL.H.S = 2cos2θcosπ2\dfrac{2}{{\cos 2\theta - \cos \dfrac{\pi }{2} }}
Since we know that cosπ2\cos \dfrac{\pi }{2} = 0
Therefore L.H.S = 2cos2θ\dfrac{2}{{\cos 2\theta }}
Since we know that secθ=1cosθ\sec \theta = \dfrac{1}{{\cos \theta }}
So, L.H.S = 2sec2θ2\sec 2\theta (equation 2)
So, L.H.S is equal to R.H.S
By the equation 1 and equation 2 we can say that
cosec(π4+θ)cosec(π4θ)=sec(π4+θ)sec(π4θ)\cos ec\left( {\dfrac{\pi }{4} + \theta } \right)\cos ec\left( {\dfrac{\pi }{4} - \theta } \right) = \sec \left( {\dfrac{\pi }{4} + \theta } \right)\sec \left( {\dfrac{\pi }{4} - \theta } \right)
Hence cosec(π4+θ)cosec(π4θ)=sec(π4+θ)sec(π4θ)=2sec2θ\cos ec\left( {\dfrac{\pi }{4} + \theta } \right)\cos ec\left( {\dfrac{\pi }{4} - \theta } \right) = \sec \left( {\dfrac{\pi }{4} + \theta } \right)\sec \left( {\dfrac{\pi }{4} - \theta } \right) = 2\sec 2\theta is proved

Note: The above question was totally based on the concept of trigonometry and its identities which can be explained as the concept which relates the sides and the angle of a right-angled triangle whereas the trigonometric identities are equalities which consist of trigonometric identities like sin theta, cos theta, etc. which are true for every occurring variable in such cases where sides of both are well defined.