Solveeit Logo

Question

Question: Prove that: \(\cos A\cos \left( \dfrac{\pi }{3}-A \right)\cos \left( \dfrac{\pi }{3}+A \right)=\dfra...

Prove that: cosAcos(π3A)cos(π3+A)=14cos3A\cos A\cos \left( \dfrac{\pi }{3}-A \right)\cos \left( \dfrac{\pi }{3}+A \right)=\dfrac{1}{4}\cos 3A

Explanation

Solution

Now let us first look at the LHS side. We can with the help of the trigonometric identity simplify the cos(π3A)cos(π3+A)\cos \left( \dfrac{\pi }{3}-A \right)\cos \left( \dfrac{\pi }{3}+A \right) term. Now simplify further by substituting the trigonometric values and then again expand in such a way that we derive back to the formula of cos3A\cos 3A

Complete step by step solution:
The given trigonometric expression is, cosAcos(π3A)cos(π3+A)=14cos3A\cos A\cos \left( \dfrac{\pi }{3}-A \right)\cos \left( \dfrac{\pi }{3}+A \right)=\dfrac{1}{4}\cos 3A
Now consider the LHS side first.
Multiply and divide with 2 on the numerator and the denominator.
12cosA[2cos(π3A)cos(π3+A)]=14cos3A\Rightarrow \dfrac{1}{2}\cos A\left[ 2\cos \left( \dfrac{\pi }{3}-A \right)\cos \left( \dfrac{\pi }{3}+A \right) \right]=\dfrac{1}{4}\cos 3A
Now here we use this trigonometric identity.
2cosAcosB=cos(A+B)+cos(AB)2\cos A\cos B=\cos \left( A+B \right)+\cos \left( A-B \right)
Upon substituting the values of A as π3A\dfrac{\pi }{3}-A and B as π3+A\dfrac{\pi }{3}+A we get,
12cosA[cos(π3A+π3+A)+cos(π3Aπ3A)]=14cos3A\Rightarrow \dfrac{1}{2}\cos A\left[ \cos \left( \dfrac{\pi }{3}-A+\dfrac{\pi }{3}+A \right)+\cos \left( \dfrac{\pi }{3}-A-\dfrac{\pi }{3}-A \right) \right]=\dfrac{1}{4}\cos 3A
Now simplify the expression further.
12cosA[cos(2π3)+cos(2A)]=14cos3A\Rightarrow \dfrac{1}{2}\cos A\left[ \cos \left( \dfrac{2\pi }{3} \right)+\cos \left( -2A \right) \right]=\dfrac{1}{4}\cos 3A
Now substitute the trigonometric value of cos2π3\cos \dfrac{2\pi }{3} as 12-\dfrac{1}{2}
12cosA[12+cos(2A)]=14cos3A\Rightarrow \dfrac{1}{2}\cos A\left[ -\dfrac{1}{2}+\cos \left( -2A \right) \right]=\dfrac{1}{4}\cos 3A
And also, cos(2A)=cos2A\cos \left( -2A \right)=\cos 2A because cosine is negative in the second and third quadrant and its periodicity is, 2π2\pi
14cosA+12cosAcos2A=14cos3A\Rightarrow -\dfrac{1}{4}\cos A+\dfrac{1}{2}\cos A\cos 2A=\dfrac{1}{4}\cos 3A
Now again consider the term, cosAcos2A\cos A\cos 2A
By using the trigonometric identities, this can be written as,
The formula is,
2cosAcosB=cos(A+B)+cos(AB)2\cos A\cos B=\cos \left( A+B \right)+\cos \left( A-B \right)
14cosA+14[2cosAcos2A]=14cos3A\Rightarrow -\dfrac{1}{4}\cos A+\dfrac{1}{4}\left[ 2\cos A\cos 2A \right]=\dfrac{1}{4}\cos 3A
14cosA+14[cos(2A+A)+cos(2AA)]=14cos3A\Rightarrow -\dfrac{1}{4}\cos A+\dfrac{1}{4}\left[ \cos \left( 2A+A \right)+\cos \left( 2A-A \right) \right]=\dfrac{1}{4}\cos 3A
Now upon simplification, we get,
14cosA+14[cos(3A)+cos(A)]=14cos3A\Rightarrow -\dfrac{1}{4}\cos A+\dfrac{1}{4}\left[ \cos \left( 3A \right)+\cos \left( A \right) \right]=\dfrac{1}{4}\cos 3A
Now open the brackets.
14cosA+14cos(3A)+14cosA=14cos3A\Rightarrow -\dfrac{1}{4}\cos A+\dfrac{1}{4}\cos \left( 3A \right)+\dfrac{1}{4}\cos A=\dfrac{1}{4}\cos 3A
Upon evaluating and canceling the common terms we get,
14cos3A=14cos3A\Rightarrow \dfrac{1}{4}\cos 3A=\dfrac{1}{4}\cos 3A
Hence proved.

Note: Whenever complex equations are given to solve one must always Firstly start from the complex side and then convert all the terms into sinθ\sin \theta or cosθ\cos \theta . Then combine them into single fractions. Now it is most likely to use Trigonometric identities for the transformations if there are any. Know when and where to apply the Subtraction-Addition formula.