Solveeit Logo

Question

Question: Prove that: \[\cos 6x = 32{\cos ^6}x - 48{\cos ^4}x + 18{\cos ^2}x - 1\]...

Prove that: cos6x=32cos6x48cos4x+18cos2x1\cos 6x = 32{\cos ^6}x - 48{\cos ^4}x + 18{\cos ^2}x - 1

Explanation

Solution

We will choose the left hand side, and then simplify it using the formula, cos2x  =2cos2x1\cos 2x\; = 2{\cos ^2}x-1 with 3x in place of x, and then we use the formula 4cos3x3cosx=cos3x4{\cos ^3}x-3\cos x = \cos 3x, and then we simplify to reach to our desired result.

Complete step by step solution:
Given cos6x=32cos6x48cos4x+18cos2x1\cos 6x = 32{\cos ^6}x - 48{\cos ^4}x + 18{\cos ^2}x - 1
R.H.S:
cos(6x)\cos \left( {6x} \right)
So, we have
=cos2(3x)= \cos 2\left( {3x} \right)
On using, cos2x  =2cos2x1\cos 2x\; = 2{\cos ^2}x-1 , we get,
=2cos2(3x)1= 2co{s^2}\left( {3x} \right) - 1
Now we can write cosnx=(cosx)n{\cos ^n}x = {(\cos x)^n} ,
So we get,
=2(cos(3x))21= 2{\left( {\cos \left( {3x} \right)} \right)^2}-1
Now using, 4cos3x3cosx=cos3x4{\cos ^3}x-3\cos x = \cos 3x , we get,
  =2(4cos3x3cosx)21\; = 2{\left( {4{{\cos }^3}x - 3\cos x} \right)^2} - 1
On using (ab)2=a2+b22ab{(a - b)^2} = {a^2} + {b^2} - 2ab , we get,
  =2((4cos3x)22.4cos3×3cosx+(3cosx)2)1\; = 2\left( {{{(4{{\cos }^3}x)}^2}-2.4{{\cos }^3} \times 3\cos x + {{(3\cos x)}^2}} \right) - 1
On expanding we get,
  =2(16cos6x24cos4x+9cos2x)1\; = 2\left( {16{{\cos }^6}x-24{{\cos }^4}x + 9{{\cos }^2}x} \right)-1
On opening the bracket, we get,
=32cos6x48cos4x+18cos2x1= 32{\cos ^6}x-48{\cos ^4}x + 18{\cos ^2}x-1
So, L.H.S. = R.H.S.
i.e., cos6x=32cos6x48cos4x+18cos2x1\cos 6x = 32{\cos ^6}x - 48{\cos ^4}x + 18{\cos ^2}x - 1
Hence, Proved.

Note:
The formulas used here are to be taken care of altogether. The formula used cos2x  =2cos2x1\cos 2x\; = 2{\cos ^2}x - 1 and 4cos3x3cosx=cos3x4{\cos ^3}x - 3\cos x = \cos 3x are to be remembered.
It is an easy problem you just need to rearrange terms and apply the correct formulas.