Question
Question: Prove that: \[\cos 6x = 32{\cos ^6}x - 48{\cos ^4}x + 18{\cos ^2}x - 1\]...
Prove that: cos6x=32cos6x−48cos4x+18cos2x−1
Solution
We will choose the left hand side, and then simplify it using the formula, cos2x=2cos2x−1 with 3x in place of x, and then we use the formula 4cos3x−3cosx=cos3x, and then we simplify to reach to our desired result.
Complete step by step solution:
Given cos6x=32cos6x−48cos4x+18cos2x−1
R.H.S:
cos(6x)
So, we have
=cos2(3x)
On using, cos2x=2cos2x−1 , we get,
=2cos2(3x)−1
Now we can write cosnx=(cosx)n ,
So we get,
=2(cos(3x))2−1
Now using, 4cos3x−3cosx=cos3x , we get,
=2(4cos3x−3cosx)2−1
On using (a−b)2=a2+b2−2ab , we get,
=2((4cos3x)2−2.4cos3×3cosx+(3cosx)2)−1
On expanding we get,
=2(16cos6x−24cos4x+9cos2x)−1
On opening the bracket, we get,
=32cos6x−48cos4x+18cos2x−1
So, L.H.S. = R.H.S.
i.e., cos6x=32cos6x−48cos4x+18cos2x−1
Hence, Proved.
Note:
The formulas used here are to be taken care of altogether. The formula used cos2x=2cos2x−1 and 4cos3x−3cosx=cos3x are to be remembered.
It is an easy problem you just need to rearrange terms and apply the correct formulas.