Solveeit Logo

Question

Question: Prove that \[{\cos ^6}\left( x \right) + {\sin ^6}\left( x \right) = \dfrac{1}{8}\left( {5 + 3\cos 4...

Prove that cos6(x)+sin6(x)=18(5+3cos4x)?{\cos ^6}\left( x \right) + {\sin ^6}\left( x \right) = \dfrac{1}{8}\left( {5 + 3\cos 4x} \right)?

Explanation

Solution

In this question, we need to prove that cos6(x)+sin6(x)=18(5+3cos4x){\cos ^6}\left( x \right) + {\sin ^6}\left( x \right) = \dfrac{1}{8}\left( {5 + 3\cos 4x} \right) . Here, we will consider the left-hand side and use the formula from exponents to rewrite it. After that we will use algebraic and trigonometric identities to simplify and determine the proof.

Formula used:
Algebraic identities:
a3+b3=(a+b)(a2+b2ab){a^3} + {b^3} = \left( {a + b} \right)\left( {{a^2} + {b^2} - ab} \right)
a2+b2=(ab)2+2ab{a^2} + {b^2} = {\left( {a - b} \right)^2} + 2ab
Trigonometric identities:
sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1
cos2θsin2θ=cos2θ{\cos ^2}\theta - {\sin ^2}\theta = \cos 2\theta
2cos2θ=1+cos2θ2{\cos ^2}\theta = 1 + \cos 2\theta
sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta
2sin2θ=1cos2θ2{\sin ^2}\theta = 1 - \cos 2\theta

Complete step by step answer:
We need to prove
cos6(x)+sin6(x)=18(5+3cos4x){\cos ^6}\left( x \right) + {\sin ^6}\left( x \right) = \dfrac{1}{8}\left( {5 + 3\cos 4x} \right)
Now let us consider the LHS to prove the condition,
So, LHS=cos6(x)+sin6(x)LHS = {\cos ^6}\left( x \right) + {\sin ^6}\left( x \right)
From the formula of exponents, we know that
(xp)q=xpq{\left( {{x^p}} \right)^q} = {x^{pq}}
Therefore, we can write cos6(x)+sin6(x){\cos ^6}\left( x \right) + {\sin ^6}\left( x \right) as (cos2x)3+(sin2x)3{\left( {{{\cos }^2}x} \right)^3} + {\left( {{{\sin }^2}x} \right)^3}
So, left-hand side becomes,
LHS=(cos2x)3+(sin2x)3LHS = {\left( {{{\cos }^2}x} \right)^3} + {\left( {{{\sin }^2}x} \right)^3}
Now we know that
a3+b3=(a+b)(a2+b2ab){a^3} + {b^3} = \left( {a + b} \right)\left( {{a^2} + {b^2} - ab} \right)
Here, a=cos2xa = {\cos ^2}x and b=sin2xb = {\sin ^2}x
On substituting the values in the formula, we get
=(cos2x+sin2x)((cos2x)2+(sin2x)2cos2xsin2x)= \left( {{{\cos }^2}x + {{\sin }^2}x} \right)\left( {{{\left( {{{\cos }^2}x} \right)}^2} + {{\left( {{{\sin }^2}x} \right)}^2} - {{\cos }^2}x \cdot {{\sin }^2}x} \right)
We know from the trigonometric identity that
sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1
Thus, by substituting the value we have
=(1)((cos2x)2+(sin2x)2cos2xsin2x)= \left( 1 \right)\left( {{{\left( {{{\cos }^2}x} \right)}^2} + {{\left( {{{\sin }^2}x} \right)}^2} - {{\cos }^2}x \cdot {{\sin }^2}x} \right)
Now we know that
a2+b2=(ab)2+2ab{a^2} + {b^2} = {\left( {a - b} \right)^2} + 2ab
Here, a=cos2xa = {\cos ^2}x and b=sin2xb = {\sin ^2}x
On substituting the values in the formula, we have
=((cos2xsin2x)2+2cos2xsin2xcos2xsin2x)= \left( {{{\left( {{{\cos }^2}x - {{\sin }^2}x} \right)}^2} + 2{{\cos }^2}x \cdot {{\sin }^2}x - {{\cos }^2}x \cdot {{\sin }^2}x} \right)
On simplifying we get
=((cos2xsin2x)2+cos2xsin2x)= \left( {{{\left( {{{\cos }^2}x - {{\sin }^2}x} \right)}^2} + {{\cos }^2}x \cdot {{\sin }^2}x} \right)
As we know from the trigonometric identity that
cos2θsin2θ=cos2θ{\cos ^2}\theta - {\sin ^2}\theta = \cos 2\theta
Therefore, we get
=((cos2x)2+cos2xsin2x)= \left( {{{\left( {\cos 2x} \right)}^2} + {{\cos }^2}x \cdot {{\sin }^2}x} \right)
=(cos2(2x)+cos2xsin2x)= \left( {{{\cos }^2}\left( {2x} \right) + {{\cos }^2}x \cdot {{\sin }^2}x} \right)
Multiply and divide by 44 we get
=14(4cos2(2x)+4cos2xsin2x)= \dfrac{1}{4}\left( {4{{\cos }^2}\left( {2x} \right) + 4{{\cos }^2}x \cdot {{\sin }^2}x} \right)
Now using identity
2cos2θ=1+cos2θ2{\cos ^2}\theta = 1 + \cos 2\theta
Therefore, we get
=14(2(1+cos4x)+4cos2xsin2x)= \dfrac{1}{4}\left( {2\left( {1 + \cos 4x} \right) + 4{{\cos }^2}x \cdot {{\sin }^2}x} \right)
=14(2(1+cos4x)+(2cosxsinx)2)= \dfrac{1}{4}\left( {2\left( {1 + \cos 4x} \right) + {{\left( {2\cos x \cdot \sin x} \right)}^2}} \right)
As we know that
sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta
Therefore, we have
=14(2(1+cos4x)+sin22x)= \dfrac{1}{4}\left( {2\left( {1 + \cos 4x} \right) + {{\sin }^2}2x} \right)
On simplifying, we get
=14(2+2cos4x+sin22x)= \dfrac{1}{4}\left( {2 + 2\cos 4x + {{\sin }^2}2x} \right)
Now multiply and divide by 22
=142(4+4cos4x+2sin22x)= \dfrac{1}{{4 \cdot 2}}\left( {4 + 4\cos 4x + 2{{\sin }^2}2x} \right)
=18(4+4cos4x+2sin22x)= \dfrac{1}{8}\left( {4 + 4\cos 4x + 2{{\sin }^2}2x} \right)
Now using identity
2sin2θ=1cos2θ2{\sin ^2}\theta = 1 - \cos 2\theta
we get
=18(4+4cos4x+1cos4x)= \dfrac{1}{8}\left( {4 + 4\cos 4x + 1 - \cos 4x} \right)
On simplifying, we get
=18(5+3cos4x)= \dfrac{1}{8}\left( {5 + 3\cos 4x} \right)
which is equal to the RHS
Hence proved.

Note: Whenever you come across these kinds of problems, always start from the more complex side. Also, you need to keep a check on both LHS and RHS while solving. Like in this question, when you were solving your LHS, you had to check in what terms your RHS is present, and then according to that you need to change your LHS to prove the question.