Solveeit Logo

Question

Question: Prove that \( \cos 510^\circ \cos 330^\circ + \sin 390^\circ \cos 120^\circ = - 1 \) ....

Prove that cos510cos330+sin390cos120=1\cos 510^\circ \cos 330^\circ + \sin 390^\circ \cos 120^\circ = - 1 .

Explanation

Solution

Hint : We can write cos510\cos 510^\circ as cos(360+150)\cos \left( {360 + 150} \right) and using the properties of cosine{\rm{cosine}} we obtain some value. cos(330)\cos \left( {330^\circ } \right) can be written as cos(36030)\cos \left( {360 - 30} \right) using cosine{\rm{cosine}} properties we get some value. sin(390)\sin \left( {390^\circ } \right) can be written as sin(360+30)\sin \left( {360 + 30} \right) using sin\sin properties we get some values and cos120\cos 120^\circ can be written as cos(90+30)\cos \left( {90 + 30} \right) using cos\cos properties we get some values.

Complete step-by-step answer :
The value of cos510cos330+sin390cos120=1\cos 510^\circ \cos 330^\circ + \sin 390^\circ \cos 120^\circ = - 1 .
We have cos510\cos 510^\circ that 510510 can be written as 360360 and 150150 . Also, 150150 can be written in terms of 180180 and 3030 since the angle for 510510 is not known so the angles of the terms will be equal.
We know the property for the cos\cos is cos(2π+θ)=cos(θ)\cos \left( {2\pi + \theta } \right) = \cos \left( \theta \right) .
On substituting value in the above formula that is θ\theta as 150150 , we get,
cos(360+150)\cos \left( {360 + 150} \right) which is cos(510)\cos \left( {510} \right) . Now, let us use the property cos(2π+θ)=cos(θ)\cos \left( {2\pi + \theta } \right) = \cos \left( \theta \right) then we get,
cos(510)=cos(360+150)\cos \left( {510} \right) = \cos \left( {360 + 150} \right)
Then we will take the property of cos\cos that is cos(πθ)=cos(θ)\cos \left( {\pi - \theta } \right) = - \cos \left( \theta \right) .
On substituting value of π\pi as 180180 and θ\theta as 3030 .Then we get, cos(18030)\cos \left( {180 - 30} \right) which is cos(150)\cos \left( {150} \right) . So,
cos(150)=cos(18030)\cos \left( {150} \right) = \cos \left( {180 - 30} \right)
Now, let us use the property cos(πθ)=cos(θ)\cos \left( {\pi - \theta } \right) = - \cos \left( \theta \right) then we get,
cos(18030)=cos(30)\cos \left( {180 - 30} \right) = - \cos \left( {30} \right)
To find the value for cos(330)\cos \left( {330} \right) we use the following property for cos\cos , which is, cos(2πθ)=cos(θ)\cos \left( {2\pi - \theta } \right) = \cos \left( \theta \right)
On substitute the value of π\pi and take θ\theta as 3030 then we obtain ,
cos(36030)\cos \left( {360 - 30} \right) which is equal to cos(330)\cos \left( {330} \right) .
Hence, cos(330)\cos \left( {330} \right) can be written as,
cos(330)=cos(36030)\cos \left( {330} \right) = \cos \left( {360 - 30} \right)
On using the property cos(2πθ)=cos(θ)\cos \left( {2\pi - \theta } \right) = \cos \left( \theta \right) , we get,
cos(36030)=cos30\cos \left( {360 - 30} \right) = \cos 30
To find the value for sin(390)\sin \left( {390} \right) value,
We will use the property sin(2π+θ)=sin(θ)\sin \left( {2\pi + \theta } \right) = \sin \left( \theta \right) , then we get,
sin(390)=sin(360+30) =sin(30)\begin{array}{c} \sin \left( {390} \right) = \sin \left( {360 + 30} \right)\\\ = \sin \left( {30} \right) \end{array}
To find the value for cos(120)\cos \left( {120} \right) , we use the property that cos(π2+30)=sin(30)\cos \left( {\dfrac{\pi }{2} + 30} \right) = - \sin \left( {30} \right) , we get,
cos(120)=cos(90+30) =sin(30)\begin{array}{c} \cos \left( {120} \right) = \cos \left( {90 + 30} \right)\\\ = - \sin \left( {30} \right) \end{array}
Putting all the values in the cos510cos330+sin390cos120\cos 510^\circ \cos 330^\circ + \sin 390^\circ \cos 120^\circ , and also by applying property that is cos2θ+sin2θ=1{\cos ^2}\theta + {\sin ^2}\theta = 1 , we obtain,
\-cos30×cos30+sin(30)×(sin(30))=cos230sin230 =(cos230+sin230) =1\begin{array}{c} \- \cos 30 \times \cos 30 + \sin \left( {30} \right) \times \left( { - \sin \left( {30} \right)} \right) = - {\cos ^2}30 - {\sin ^2}30\\\ = - \left( {{{\cos }^2}30 + {{\sin }^2}30} \right)\\\ = - 1 \end{array}
Hence, cos510cos330+sin390cos120=1\cos 510^\circ \cos 330^\circ + \sin 390^\circ \cos 120^\circ = - 1 .

Note : please be careful with the properties of the trigonometric function that is sin\sin , cos\cos properties. This problem can be proved by substituting the values which are known since, the value of sin(30)\sin \left( {30} \right) and cos(30)\cos \left( {30} \right) is known that is sin(30)=12\sin \left( {30} \right) = \dfrac{1}{2} and cos(30)=32\cos \left( {30} \right) = \dfrac{{\sqrt 3 }}{2} .