Solveeit Logo

Question

Question: Prove that: \[\cos 4x = 1 - 8si{n^2}xco{s^2}x\]...

Prove that: cos4x=18sin2xcos2x\cos 4x = 1 - 8si{n^2}xco{s^2}x

Explanation

Solution

Here in this problem we are going to use the formula of cos2x=2cos2x1cos2x = 2co{s^2}x - 1 and use it for cos4x=cos(2(2x))\cos 4x = \cos (2(2x)), and again we use cos2x=2cos2x1cos2x = 2co{s^2}x - 1 for further simplification, on solving the problem we will reach to our desired result.

Complete step by step Answer:

Given, cos4x=18sin2xcos2xcos4x = 1 - 8si{n^2}xco{s^2}x
Taking LHS, cos4xcos4x,
We know, cos2x=2cos2x1cos2x = 2co{s^2}x - 1
Replacing x by 2x2x , we get,
cos2(2x)=2cos2(2x)1cos2\left( {2x} \right) = 2co{s^2}\left( {2x} \right) - 1
cos4x=2cos22x1\Rightarrow cos4x = 2co{s^2}2x - 1
Using cos2x=2cos2x1cos2x = 2co{s^2}x - 1 again, we get,
=2(2cos2x1)21  = 2{\left( {2co{s^2}x - 1} \right)^2} - 1\;
Using (ab)2=a2+b22ab{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab, we get,
=2[(2cos2x)2+(1)22(2cos2x)×1]1= 2\left[ {{{\left( {2co{s^2}x} \right)}^2} + {{\left( 1 \right)}^2} - 2\left( {2co{s^2}x} \right) \times 1} \right] - 1
On Simplification we get,
=2[4cos4x+14cos2x]1= 2\left[ {4{{\cos }^4}x + 1 - 4{{\cos }^2}x} \right] - 1
On opening the bracket we get,
=8cos4x+28cos2x1= 8{\cos ^4}x + 2 - 8{\cos ^2}x - 1
On further simplification we get,
=8cos4x+18cos2x= 8{\cos ^4}x + 1 - 8{\cos ^2}x
On taking terms common we get,
=8cos2x(cos2x1)+1= 8co{s^2}x\left( {co{s^2}x - 1} \right) + 1
On taking -1 common we get,
=8cos2x[(1cos2x)]+1= 8co{s^2}x\left[ { - \left( {1 - co{s^2}x} \right)} \right] + 1
=8cos2x[(1cos2x)]+1= - 8co{s^2}x\left[ {\left( {1 - co{s^2}x} \right)} \right] + 1
Using, sin2x=1cos2xsi{n^2}x = 1 - co{s^2}x, we get,
=8cos2xsin2x+1              = - 8co{s^2}xsi{n^2}x + 1\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;
On rearranging we get,
=18sin2xcos2x= 1 - 8si{n^2}xco{s^2}x
=RHS
Hence, cos4x=18sin2xcos2x\cos 4x = 1 - 8si{n^2}xco{s^2}x

Note: We can prove the result, cos2x=2cos2x1cos2x = 2co{s^2}x - 1 by,
Using the identity: cos (a + b) = cos a.cos b  sin a.sin bcos{\text{ }}\left( {a{\text{ }} + {\text{ }}b} \right){\text{ }} = {\text{ }}cos{\text{ }}a.cos{\text{ }}b{\text{ }} - {\text{ }}sin{\text{ }}a.sin{\text{ }}b
cos2x = cos(x + x) = cosx.cosx - sinx.sinx = co{s^2}x - si{n^2}x$$$$ = co{s^2}x - (1 - co{s^2}x) = 2co{s^2}x - 1