Solveeit Logo

Question

Question: Prove that: \( \cos 18{}^\circ -\sin 18{}^\circ =\sqrt{2}\sin 27{}^\circ \)...

Prove that: cos18sin18=2sin27\cos 18{}^\circ -\sin 18{}^\circ =\sqrt{2}\sin 27{}^\circ

Explanation

Solution

We know that sin(90θ)=cosθ\sin (90{}^\circ -\theta )=\cos \theta .
Use the identity cos2Acos2B=2sin(A+B)sin(AB)\cos 2A-\cos 2B=-2\sin (A+B)\sin (A-B) .
We also know that sin(θ)=sinθ\sin (-\theta )=-\sin \theta .
Simplify the expression and use sin45=12\sin 45{}^\circ =\dfrac{1}{\sqrt{2}} .

Complete step by step answer:
We can write sin18=sin(9072)=cos72\sin 18{}^\circ =\sin (90{}^\circ -72{}^\circ )=\cos 72{}^\circ .
Therefore, the LHS cos18sin18\cos 18{}^\circ -\sin 18{}^\circ of the given relation becomes:
= cos18cos72\cos 18{}^\circ -\cos 72{}^\circ
= cos(2×9)cos(2×36)\cos (2\times 9{}^\circ )-\cos (2\times 36{}^\circ )
Using the identity cos2Acos2B=2sin(A+B)sin(AB)\cos 2A-\cos 2B=-2\sin (A+B)\sin (A-B) , we get:
= 2sin(9+36)sin(936)-2\sin (9{}^\circ +36{}^\circ )\sin (9{}^\circ -36{}^\circ )
= 2sin(45)sin(27)-2\sin (45{}^\circ )\sin (-27{}^\circ )
Using sin(θ)=sinθ\sin (-\theta )=-\sin \theta and sin45=12\sin 45{}^\circ =\dfrac{1}{\sqrt{2}} , we get:
= 2×12×(sin27)-2\times \dfrac{1}{\sqrt{2}}\times (-\sin 27{}^\circ )
Multiplying the numerator and the denominator by 2\sqrt{2} , we get:
= 2×1×22×2×sin272\times \dfrac{1\times \sqrt{2}}{\sqrt{2}\times \sqrt{2}}\times \sin 27{}^\circ
= 2×22×sin272\times \dfrac{\sqrt{2}}{2}\times \sin 27{}^\circ
= 2×sin27\sqrt{2}\times \sin 27{}^\circ
= RHS
Hence, proved.

Note: sin18=514\sin 18{}^\circ =\dfrac{\sqrt{5}-1}{4} , cos18=10+254\cos 18{}^\circ =\dfrac{\sqrt{10+2\sqrt{5}}}{4} and sin72=10+254\sin 72{}^\circ =\dfrac{\sqrt{10+2\sqrt{5}}}{4} .
The values of sinθ\sin \theta and cosθ\cos \theta are positive in the range 0<θ<900{}^\circ <\theta <90{}^\circ .
sin2A+sin2B=2sin(A+B)cos(AB)\sin 2A+\sin 2B=2\sin (A+B)\cos (A-B)
sin2Asin2B=2cos(A+B)sin(AB)\sin 2A-\sin 2B=2\cos (A+B)\sin (A-B)
cos2A+cos2B=2cos(A+B)cos(AB)\cos 2A+\cos 2B=2\cos (A+B)\cos (A-B)
cos2Acos2B=2sin(A+B)sin(AB)\cos 2A-\cos 2B=-2\sin (A+B)\sin (A-B)