Question
Question: Prove that: \( \cos 18{}^\circ -\sin 18{}^\circ =\sqrt{2}\sin 27{}^\circ \)...
Prove that: cos18∘−sin18∘=2sin27∘
Solution
We know that sin(90∘−θ)=cosθ .
Use the identity cos2A−cos2B=−2sin(A+B)sin(A−B) .
We also know that sin(−θ)=−sinθ .
Simplify the expression and use sin45∘=21 .
Complete step by step answer:
We can write sin18∘=sin(90∘−72∘)=cos72∘ .
Therefore, the LHS cos18∘−sin18∘ of the given relation becomes:
= cos18∘−cos72∘
= cos(2×9∘)−cos(2×36∘)
Using the identity cos2A−cos2B=−2sin(A+B)sin(A−B) , we get:
= −2sin(9∘+36∘)sin(9∘−36∘)
= −2sin(45∘)sin(−27∘)
Using sin(−θ)=−sinθ and sin45∘=21 , we get:
= −2×21×(−sin27∘)
Multiplying the numerator and the denominator by 2 , we get:
= 2×2×21×2×sin27∘
= 2×22×sin27∘
= 2×sin27∘
= RHS
Hence, proved.
Note: sin18∘=45−1 , cos18∘=410+25 and sin72∘=410+25 .
The values of sinθ and cosθ are positive in the range 0∘<θ<90∘ .
sin2A+sin2B=2sin(A+B)cos(A−B)
sin2A−sin2B=2cos(A+B)sin(A−B)
cos2A+cos2B=2cos(A+B)cos(A−B)
cos2A−cos2B=−2sin(A+B)sin(A−B)