Solveeit Logo

Question

Question: Prove that \[{\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}}...

Prove that cos1(45)+cos1(1213)=cos1(3365){\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{33}}{{65}}} \right)

Explanation

Solution

To prove the statement at first we have to assume each term in LHS as separate variables. For example consider cos1(45){\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right) be equal to a variable x and cos1(1213){\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) be equal to another variable y. Then By using the property of trigonometric inverse function we will find out cosx\cos x and cosy\cos y. Then we will find corresponding values of sinx\sin x and siny\sin y. Finally we have to find out the value of cos(x+y)\cos (x + y) by substituting the values of cosx\cos x,cosy\cos y,sinx\sin x and siny\sin y obtained earlier and by using the properties of trigonometric inverse function we can prove the given statement.

Complete step by step answer:
The LHS of the statement is given by
LHS=cos1(45)+cos1(1213)LHS = {\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) ………………………… (1)
Let cos1(45)=x{\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right) = x ………………………… (2)
And cos1(1213)=y{\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = y ………………………… (3)
But we know the property of the trigonometric function that if cos1θ=A{\cos ^{ - 1}}\theta = A then θ=cosA\theta = \cos A. Hence using this property we can write eq. (2) and (3) as
cosx=45\cos x = \dfrac{4}{5} ………………………… (4)
And cosy=1213\cos y = \dfrac{{12}}{{13}} ………………………… (5)
Again we know the sine and cosine functions are related by
sinθ=1cos2θ\sin \theta = \sqrt {1 - {{\cos }^2}\theta } ………………………… (6)
Applying these formulae to eq. (4) and (5), we will obtain,

sinx=1(45)2 =925 =35  \sin x = \sqrt {1 - {{\left( {\dfrac{4}{5}} \right)}^2}} \\\ = \sqrt {\dfrac{9}{{25}}} \\\ = \dfrac{3}{5} \\\
                            ………………………………………… (7)  

And

siny=1(1213)2 =25169 =513  \sin y = \sqrt {1 - {{\left( {\dfrac{{12}}{{13}}} \right)}^2}} \\\ = \sqrt {\dfrac{{25}}{{169}}} \\\ = \dfrac{5}{{13}} \\\
                        ……………………………………………. (8)  

We know the formulae that
cos(x+y)=cosxcosysinxsiny\cos (x + y) = \cos x\cos y - \sin x\sin y ……………………………. (9)
Now substituting the values of eq. (2), (3), (4), (5), (6) and (7) in eq. (9) we will get,

cos[cos1(45)+cos1(1213)]=(45)(1213)(35)(513) =4865313 =3365  \cos \left[ {{{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right) + {{\cos }^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right)} \right] = \left( {\dfrac{4}{5}} \right)\left( {\dfrac{{12}}{{13}}} \right) - \left( {\dfrac{3}{5}} \right)\left( {\dfrac{5}{{13}}} \right) \\\ = \dfrac{{48}}{{65}} - \dfrac{3}{{13}} \\\ = \dfrac{{33}}{{65}} \\\
           ……………………………….. (10)  

Using the property of inverse trigonometric function we can write eq. (10) as
cos1(45)+cos1(1213)=cos1(3365){\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{33}}{{65}}} \right)
Now the statement is proved.

Note: In alternative method we can apply direct formula given by, cos1A+cos1B=cos1[AB(1A2)(1B2)]{\cos ^{ - 1}}A + {\cos ^{ - 1}}B = {\cos ^{ - 1}}\left[ {AB - \sqrt {\left( {1 - {A^2}} \right)\left( {1 - {B^2}} \right)} } \right] to prove the statement.