Solveeit Logo

Question

Question: Prove that \({{\cos }^{-1}}\left( \dfrac{1}{x} \right)={{\sec }^{-1}}x,x\in \left( -\infty ,-1 \righ...

Prove that cos1(1x)=sec1x,x(,1][1,){{\cos }^{-1}}\left( \dfrac{1}{x} \right)={{\sec }^{-1}}x,x\in \left( -\infty ,-1 \right]\bigcup \left[ 1,\infty \right)

Explanation

Solution

Hint: Use the fact that if y=cos1xy={{\cos }^{-1}}x, then x=cosyx=\cos y. Assume y=cos1(1x)y={{\cos }^{-1}}\left( \dfrac{1}{x} \right). Use the previously mentioned fact and write x in terms of y. Take sec1{{\sec }^{-1}} on both side and use the fact that if y\in \left[ 0,\pi \right]-\left\\{ \dfrac{\pi }{2} \right\\}, then sec1(secy)=y{{\sec }^{-1}}\left( \sec y \right)=y and hence prove the result.

Complete step-by-step answer:
Before dwelling into the proof of the above question, we must understand how cos1x{{\cos }^{-1}}x is defined even when cosx\cos x is not one-one.
We know that cosx is a periodic function.
Let us draw the graph of cosx

As is evident from the graph cosx is a repeated chunk of the graph of cosx within the interval [A,B]\left[ A,B \right] , and it attains all its possible values in the interval [A,C]\left[ A,C \right]. Here A=0,B=2πA=0,B=2\pi and C=πC=\pi
Hence if we consider cosx in the interval [A, C], we will lose no value attained by cosx, and at the same time, cosx will be one-one and onto.
Hence cos1x{{\cos }^{-1}}x is defined over the domain [1,1]\left[ -1,1 \right], with codomain [0,π]\left[ 0,\pi \right] as in the domain [0,π]\left[ 0,\pi \right], cosx is one-one and Rcosx=[1,1]{{R}_{\cos x}}=\left[ -1,1 \right].
Now since arccosx\arccos x is the inverse of cosx it satisfies the fact that if y=arccosxy=\arccos x, then cosy=x\cos y=x.
So let y=cos1(1x)y={{\cos }^{-1}}\left( \dfrac{1}{x} \right), y\in \left[ 0,\pi \right]-\left\\{ \dfrac{\pi }{2} \right\\} as 1x0\dfrac{1}{x}\ne 0
Hence we have cosy=1x\cos y=\dfrac{1}{x}
Hence we have x=1cosy=secyx=\dfrac{1}{\cos y}=\sec y
Taking sec1{{\sec }^{-1}} on both sides, we get
sec1x=sec1(secy){{\sec }^{-1}}x={{\sec }^{-1}}\left( \sec y \right)
Now since y\in \left[ 0,\pi \right]-\left\\{ \dfrac{\pi }{2} \right\\} and we know that if y\in \left[ 0,\pi \right]-\left\\{ \dfrac{\pi }{2} \right\\}, then sec1(secy)=y{{\sec }^{-1}}\left( \sec y \right)=y [Valid only in principal branch]
Hence we have
sec1x=y y=sec1y \begin{aligned} & {{\sec }^{-1}}x=y \\\ & \Rightarrow y={{\sec }^{-1}}y \\\ \end{aligned}
Reverting to the original variable, we get
cos1(1x)=sec1(x){{\cos }^{-1}}\left( \dfrac{1}{x} \right)={{\sec }^{-1}}\left( x \right)
Since 1x\dfrac{1}{x} is in the domain of cos1x{{\cos }^{-1}}x, we get
1x[1,1]x(,1][1,)\dfrac{1}{x}\in \left[ -1,1 \right]\Rightarrow x\in \left( -\infty ,-1 \right]\bigcup \left[ 1,\infty \right)
Hence we have cos1(1x)=sec1x,x(,1][1,){{\cos }^{-1}}\left( \dfrac{1}{x} \right)={{\sec }^{-1}}x,x\in \left( -\infty ,-1 \right]\bigcup \left[ 1,\infty \right)

Note: [1] The above-specified codomain for cos1x{{\cos }^{-1}}x is called principal branch forcos1x{{\cos }^{-1}}x . We can select any branch as long as cosx\cos x is one-one and onto and Range =[1,1]=\left[ -1,1 \right]. Like instead of [0,π]\left[ 0,\pi \right], we can select the interval [π,2π]\left[ \pi ,2\pi \right]. The proof will remain the same as above.