Solveeit Logo

Question

Question: Prove that:\({c^2} = {(a - b)^2}{\cos ^2}\dfrac{1}{2}C + {(a + b)^2}{\sin ^2}\dfrac{1}{2}C.\)...

Prove that:c2=(ab)2cos212C+(a+b)2sin212C.{c^2} = {(a - b)^2}{\cos ^2}\dfrac{1}{2}C + {(a + b)^2}{\sin ^2}\dfrac{1}{2}C.

Explanation

Solution

Hint: Expand the given equation and try to eliminate the trigonometric terms.

Taking R.H.S.,
\Rightarrow (ab)2cos212C+(a+b)2sin212C.{(a - b)^2}{\cos ^2}\dfrac{1}{2}C + {(a + b)^2}{\sin ^2}\dfrac{1}{2}C.
\Rightarrow (a2+b22ab)cos212C+(a2+b2+2ab)sin212C({a^2} + {b^2} - 2ab){\cos ^2}\dfrac{1}{2}C + ({a^2} + {b^2} + 2ab){\sin ^2}\dfrac{1}{2}C
\Rightarrow a2cos212C+b2cos212C2abcos212C+a2sin212C+b2sin212C+2absin212C{a^2}{\cos ^2}\dfrac{1}{2}C + {b^2}{\cos ^2}\dfrac{1}{2}C - 2ab{\cos ^2}\dfrac{1}{2}C + {a^2}{\sin ^2}\dfrac{1}{2}C + {b^2}{\sin ^2}\dfrac{1}{2}C + 2ab{\sin ^2}\dfrac{1}{2}C
\Rightarrow $$${a^2}\left( {{{\sin }^2}\dfrac{1}{2}C + {{\cos }^2}\dfrac{1}{2}C} \right) + {b^2}\left( {{{\sin }^2}\dfrac{1}{2}C + {{\cos }^2}\dfrac{1}{2}C} \right) - 2ab\left( {{{\cos }^2}\dfrac{1}{2}C - {{\sin }^2}\dfrac{1}{2}C} \right)$$ We know that, $$\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right) = 1$$ Therefore, using this identity, we get, $$ = {a^2} + {b^2} - 2ab\left( {{{\cos }^2}\dfrac{1}{2}C - {{\sin }^2}\dfrac{1}{2}C} \right)$$ We know the identity, $$\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right) = \cos 2\theta $$ Therefore, using this identity, we get, $$ = {a^2} + {b^2} - 2ab\cos C$$ Now, we know the identity, \cos C = \dfrac{{{b^2} + {a^2} - {c^2}}}{{2ab}}$
Therefore, using this identity, we get,
=a2+b22ab(b2+a2c22ab)= {a^2} + {b^2} - 2ab\left( {\dfrac{{{b^2} + {a^2} - {c^2}}}{{2ab}}} \right)
=a2+b2(b2+a2c2)= {a^2} + {b^2} - ({b^2} + {a^2} - {c^2})
=a2+b2b2a2+c2= {a^2} + {b^2} - {b^2} - {a^2} + {c^2}
=c2= {c^2}
That is, LHS=RHS.
So, this is the required solution.

Note: To solve such questions, we should have a good knowledge of various trigonometric identities. We have to analyse each and every step, and have to identify the identity being used to obtain the required solution.