Solveeit Logo

Question

Question: Prove that by the induction method that for all \(n\ge 1\) , \(\int{{{x}^{n}}{{e}^{x}}dx=n!{{e}^{x...

Prove that by the induction method that for all n1n\ge 1 ,
xnexdx=n!ex[xnn!xn1(n1)!+xn2(n2)!...........+(1)n]\int{{{x}^{n}}{{e}^{x}}dx=n!{{e}^{x}}\left[ \dfrac{{{x}^{n}}}{n!}-\dfrac{{{x}^{n-1}}}{(n-1)!}+\dfrac{{{x}^{n-2}}}{(n-2)!}-...........+{{(-1)}^{n}} \right]}

Explanation

Solution

Hint:Let P (n) be a statement involving the natural number n such that P (1) is true and P (k+1) is true, whenever P (k) is true. Then P (n) is true for all nNn\in N. This is known as the Principal of Mathematical Induction.

Complete step-by-step answer:
Suppose that we have to prove that a certain property of an expression in n,(nN)\left( n\in N \right) is true for all n, then we have to go through the following steps.
Let P(n)=xnexdx=n!ex[xnn!xn1(n1)!+xn2(n2)!...........+(1)n],nNP(n)=\int{{{x}^{n}}{{e}^{x}}dx=n!{{e}^{x}}\left[ \dfrac{{{x}^{n}}}{n!}-\dfrac{{{x}^{n-1}}}{(n-1)!}+\dfrac{{{x}^{n-2}}}{(n-2)!}-...........+{{(-1)}^{n}} \right]},\forall n\in N
Step I (Foundation)
Denote the statement stating the property by P (n). Verify that P (1) is true.
Put n = 1 in the L.H.S. and integrate by using by parts, we get
L.H.S. = xexdx=xex1exdx=xexex=ex(x1)\int{x{{e}^{x}}dx}=x{{e}^{x}}-\int{1\cdot {{e}^{x}}dx=x{{e}^{x}}-{{e}^{x}}={{e}^{x}}(x-1)}
R.H.S. =ex(x1!10!)=ex(x1){{e}^{x}}\left( \dfrac{x}{1!}-\dfrac{1}{0!} \right)={{e}^{x}}(x-1)
Therefore, L.H.S = R.H.S.
P(n) is true for n = 1.
Step II (Assumption)
Assume that P (k) is true and write the result for P (k).
Let us consider that P (n) is true for n = k.
xkexdx=k!ex[xkk!xk1(k1)!+xk2(k2)!...........+(1)k]..........(1)\int{{{x}^{k}}{{e}^{x}}dx=k!{{e}^{x}}\left[ \dfrac{{{x}^{k}}}{k!}-\dfrac{{{x}^{k-1}}}{(k-1)!}+\dfrac{{{x}^{k-2}}}{(k-2)!}-...........+{{(-1)}^{k}} \right]}..........(1)
Step III (Succession)
Prove that P (k+1) is true, when P (k) is true.
To prove that xk+1exdx=(k+1)!ex[xk+1(k+1)!xk(k)!+xk1(k1)!...........+(1)k+1].........(2)\int{{{x}^{k+1}}{{e}^{x}}dx=(k+1)!{{e}^{x}}\left[ \dfrac{{{x}^{k+1}}}{(k+1)!}-\dfrac{{{x}^{k}}}{(k)!}+\dfrac{{{x}^{k-1}}}{(k-1)!}-...........+{{(-1)}^{k+1}} \right]}.........(2)
Consider the R.H.S.
R. H. S. =xk+1exdx=\int{{{x}^{k+1}}{{e}^{x}}dx}
Integrate with respect to x by using integrating by parts uvdx=uvdx[dudxvdx]dx\int{uvdx}=u\int{v}dx-\int{\left[ \dfrac{du}{dx}\int{v}dx \right]}dx , we get
R. H. S. =xk+1ex[ddxxk+1exdx]dx={{x}^{k+1}}\int{{{e}^{x}}}-\int{\left[ \dfrac{d}{dx}{{x}^{k+1}}\int{{{e}^{x}}dx} \right]dx}
We have exdx=ex and ddxxk+1=(k+1)xk\int{{{e}^{x}}dx={{e}^{x}}\text{ and }\dfrac{d}{dx}{{x}^{k+1}}=}(k+1){{x}^{k}}
R. H. S. =xk+1ex(k+1)xkexdx={{x}^{k+1}}{{e}^{x}}-\int{(k+1){{x}^{k}}{{e}^{x}}dx}
R. H. S. =xk+1ex(k+1)xkexdx={{x}^{k+1}}{{e}^{x}}-(k+1)\int{{{x}^{k}}{{e}^{x}}dx}
Put the value of the integralxkexdx=k!ex[xkk!xk1(k1)!+xk2(k2)!...........+(1)k]\int{{{x}^{k}}{{e}^{x}}dx=k!{{e}^{x}}\left[ \dfrac{{{x}^{k}}}{k!}-\dfrac{{{x}^{k-1}}}{(k-1)!}+\dfrac{{{x}^{k-2}}}{(k-2)!}-...........+{{(-1)}^{k}} \right]}, we get
R. H. S =xk+1ex(k+1)k!ex[xkk!xk1(k1)!+xk2(k2)!...........+(1)k]={{x}^{k+1}}{{e}^{x}}-(k+1)k!{{e}^{x}}\left[ \dfrac{{{x}^{k}}}{k!}-\dfrac{{{x}^{k-1}}}{(k-1)!}+\dfrac{{{x}^{k-2}}}{(k-2)!}-...........+{{(-1)}^{k}} \right]
R. H. S =xk+1ex(k+1)k!ex[xkk!xk1(k1)!+xk2(k2)!...........+(1)k]={{x}^{k+1}}{{e}^{x}}-(k+1)k!{{e}^{x}}\left[ \dfrac{{{x}^{k}}}{k!}-\dfrac{{{x}^{k-1}}}{(k-1)!}+\dfrac{{{x}^{k-2}}}{(k-2)!}-...........+{{(-1)}^{k}} \right]
We have (k+1)k!=(k+1)!(k+1)k!=(k+1)!
R. H. S =xk+1ex(k+1)!ex[xkk!xk1(k1)!+xk2(k2)!...........+(1)k]={{x}^{k+1}}{{e}^{x}}-(k+1)!{{e}^{x}}\left[ \dfrac{{{x}^{k}}}{k!}-\dfrac{{{x}^{k-1}}}{(k-1)!}+\dfrac{{{x}^{k-2}}}{(k-2)!}-...........+{{(-1)}^{k}} \right]
Take (k+1)!ex(k+1)!{{e}^{x}}common, we get
R. H. S =(k+1)!ex[xk+1(k+1)!xkk!+xk1(k1)!xk2(k2)!+...........+(1)k+1]=(k+1)!{{e}^{x}}\left[ \dfrac{{{x}^{k+1}}}{(k+1)!}-\dfrac{{{x}^{k}}}{k!}+\dfrac{{{x}^{k-1}}}{(k-1)!}-\dfrac{{{x}^{k-2}}}{(k-2)!}+...........+{{(-1)}^{k+1}} \right]
R. H. S. = L. H. S.
Therefore, P (n) is true for n=k+1n=k+1.
Step IV (Induction)
From all steps above by the principal of mathematical induction, P(n) is true for all nNn\in N.
Hence xnexdx=n!ex[xnn!xn1(n1)!+xn2(n2)!...........+(1)n],nN\int{{{x}^{n}}{{e}^{x}}dx=n!{{e}^{x}}\left[ \dfrac{{{x}^{n}}}{n!}-\dfrac{{{x}^{n-1}}}{(n-1)!}+\dfrac{{{x}^{n-2}}}{(n-2)!}-...........+{{(-1)}^{n}} \right]},\forall n\in N

Note: When doing Integration by parts, we know that LIATE can be a useful guide most of the time. For those not familiar, LIATE is a guide to help you decide which term to differentiate and which term to integrate.