Question
Mathematics Question on Determinants
Prove thata2 a2+ab abbcb2b2+bcac+c2acc2=4a2b2c2
Answer
Δ=a2 a2+ab abbcb2b2+bcac+c2acc2
Taking out common factors a,b and c from C1,C2 and C3 we have,
Δ=abca a+b bcbb+ca+cac
Applying R2→R2-R1 and R3→R3-R1,we have:
Δ=abca b b−acb−cba+c−c−a
Applying R2→R2+R1,we heve:
Δ=abca a+b 2bcb2ba+ca0
Applying R3→R3+R2,we heve:
Δ=abca a+b 2bcb2ba+ca0
Δ=2a2bca a+b 2bcb2ba+ca0
ApplyingC2→C2-C1, we have:
Δ=2a2bca a−b 0c−a−a0a+ca0
Expanding along R3,we have:
Δ=2ab2c[a(c-a)+a(a+c)]
=2ab2c[ac-a2+a2+ac]
=2ab2c(2ac)
=4a2b2c2
Hence, the given result is proved.