Solveeit Logo

Question

Mathematics Question on Determinants

Prove thata2bcac+c2 a2+abb2ac abb2+bcc2=4a2b2c2\begin{vmatrix} a^2&bc &ac+c^2 \\\ a^2+ab&b^2 &ac\\\ ab&b^2+bc &c^2 \end{vmatrix}=4a^2b^2c^2

Answer

Δ=a2bcac+c2 a2+abb2ac abb2+bcc2\Delta = \begin{vmatrix} a^2&bc &ac+c^2 \\\ a^2+ab&b^2 &ac\\\ ab&b^2+bc &c^2 \end{vmatrix}

Taking out common factors a,b and c from C1,C2 and C3 we have,
Δ=abcaca+c a+bba bb+cc\Delta=abc\begin{vmatrix} a&c &a+c \\\ a+b&b &a \\\ b&b+c &c \end{vmatrix}
Applying R2\rightarrowR2-R1 and R3\rightarrowR3-R1,we have:
Δ=abcaca+c bbcc baba\Delta=abc\begin{vmatrix} a&c &a+c \\\ b&b-c &-c \\\ b-a&b &-a \end{vmatrix}
Applying R2\rightarrowR2+R1,we heve:
Δ=abcaca+c a+bba 2b2b0\Delta=abc\begin{vmatrix} a&c &a+c \\\ a+b&b &a \\\ 2b&2b &0 \end{vmatrix}
Applying R3\rightarrowR3+R2,we heve:
Δ=abcaca+c a+bba 2b2b0\Delta=abc\begin{vmatrix} a&c &a+c \\\ a+b&b &a \\\ 2b&2b &0 \end{vmatrix}
Δ=2a2bcaca+c a+bba 2b2b0\Delta=2a^2bc\begin{vmatrix} a&c &a+c \\\ a+b&b &a \\\ 2b&2b &0 \end{vmatrix}
ApplyingC2\rightarrowC2-C1, we have:
Δ=2a2bcacaa+c abaa 000\Delta=2a^2bc\begin{vmatrix} a&c-a &a+c \\\ a-b&-a &a \\\ 0&0 &0 \end{vmatrix}
Expanding along R3,we have:
Δ=2ab2c[a(c-a)+a(a+c)]
=2ab2c[ac-a2+a2+ac]
=2ab2c(2ac)
=4a2b2c2

Hence, the given result is proved.