Solveeit Logo

Question

Question: Prove that: \[\begin{aligned} & (i)\sqrt{\dfrac{\sec \theta -1}{\sec \theta +1}}+\sqrt{\dfrac{...

Prove that:

& (i)\sqrt{\dfrac{\sec \theta -1}{\sec \theta +1}}+\sqrt{\dfrac{\sec \theta +1}{\sec \theta -1}}=2cosec\theta \\\ & (ii)\sqrt{\dfrac{1+\sin \theta }{1-\sin \theta }}+\sqrt{\dfrac{1-\sin \theta }{1+\sin \theta }}=2\sec \theta \\\ \end{aligned}$$
Explanation

Solution

To solve the given question, we should know some of the trigonometric properties that are given below, we should know that sine and cosine are inverse of secant and cosecant function respectively, that is secθ=1cosθ&cscθ=1sinθ\sec \theta =\dfrac{1}{\cos \theta }\And \csc \theta =\dfrac{1}{\sin \theta }. Also, we should know the trigonometric identity relation between sine-cosine function, and secant-tangent functions,
sin2θ+cos2θ=1&1+tan2θ=sec2θ{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\And 1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta .

Complete step by step answer:
The first statement we need to prove is, secθ1secθ+1+secθ+1secθ1=2cosecθ\sqrt{\dfrac{\sec \theta -1}{\sec \theta +1}}+\sqrt{\dfrac{\sec \theta +1}{\sec \theta -1}}=2cosec\theta . The LHS of the statement is secθ1secθ+1+secθ+1secθ1\sqrt{\dfrac{\sec \theta -1}{\sec \theta +1}}+\sqrt{\dfrac{\sec \theta +1}{\sec \theta -1}}, and the RHS is 2cosecθ2cosec\theta . Multiplying the first term in the LHS by secθ1secθ1\sqrt{\dfrac{\sec \theta -1}{\sec \theta -1}}, and the second term by secθ+1secθ+1\sqrt{\dfrac{\sec \theta +1}{\sec \theta +1}}. We get
secθ1secθ+1secθ1secθ1+secθ+1secθ1secθ+1secθ+1\Rightarrow \sqrt{\dfrac{\sec \theta -1}{\sec \theta +1}}\sqrt{\dfrac{\sec \theta -1}{\sec \theta -1}}+\sqrt{\dfrac{\sec \theta +1}{\sec \theta -1}}\sqrt{\dfrac{\sec \theta +1}{\sec \theta +1}}
Simplifying the above expression, it can be written as
(secθ1)2(secθ)2(1)2+(secθ+1)2(secθ)2(1)2\Rightarrow \sqrt{\dfrac{{{\left( \sec \theta -1 \right)}^{2}}}{{{\left( \sec \theta \right)}^{2}}-{{\left( 1 \right)}^{2}}}}+\sqrt{\dfrac{{{\left( \sec \theta +1 \right)}^{2}}}{{{\left( \sec \theta \right)}^{2}}-{{\left( 1 \right)}^{2}}}}
Using the trigonometric identity, 1+tan2θ=sec2θ1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta , the denominator of the above expression can be expressed as
(secθ1)2tan2θ+(secθ+1)2tan2θ\Rightarrow \sqrt{\dfrac{{{\left( \sec \theta -1 \right)}^{2}}}{{{\tan }^{2}}\theta }}+\sqrt{\dfrac{{{\left( \sec \theta +1 \right)}^{2}}}{{{\tan }^{2}}\theta }}
canceling out the power, we get
(secθ1)tanθ+(secθ+1)tanθ\Rightarrow \dfrac{\left( \sec \theta -1 \right)}{\tan \theta }+\dfrac{\left( \sec \theta +1 \right)}{\tan \theta }
As the denominator of both terms is the same, we can add the numerator directly, by doing this we get
2secθtanθ\Rightarrow \dfrac{2\sec \theta }{\tan \theta }
We know that secθ=1cosθ&tanθ=sinθcosθ\sec \theta =\dfrac{1}{\cos \theta }\And \tan \theta =\dfrac{\sin \theta }{\cos \theta }. Using this, the above expression can be simplified as
2sinθ=2cscθ=RHS\Rightarrow \dfrac{2}{\sin \theta }=2\csc \theta =RHS
LHS=RHS\therefore LHS=RHS
Hence, proved.

The second statement to prove is 1+sinθ1sinθ+1sinθ1+sinθ=2secθ\sqrt{\dfrac{1+\sin \theta }{1-\sin \theta }}+\sqrt{\dfrac{1-\sin \theta }{1+\sin \theta }}=2\sec \theta . The LHS of the statement is 1+sinθ1sinθ+1sinθ1+sinθ\sqrt{\dfrac{1+\sin \theta }{1-\sin \theta }}+\sqrt{\dfrac{1-\sin \theta }{1+\sin \theta }}, and the RHS of the statement is 2secθ2\sec \theta .
Multiplying the first term in the LHS by 1+sinθ1+sinθ\sqrt{\dfrac{1+\sin \theta }{1+\sin \theta }}, and second term by 1sinθ1sinθ\sqrt{\dfrac{1-\sin \theta }{1-\sin \theta }}. We get
1+sinθ1sinθ1+sinθ1+sinθ+1sinθ1+sinθ1sinθ1sinθ\sqrt{\dfrac{1+\sin \theta }{1-\sin \theta }}\sqrt{\dfrac{1+\sin \theta }{1+\sin \theta }}+\sqrt{\dfrac{1-\sin \theta }{1+\sin \theta }}\sqrt{\dfrac{1-\sin \theta }{1-\sin \theta }}
Simplifying the above expression, we get
(1+sinθ)212sin2θ+(1sinθ)212sin2θ\Rightarrow \sqrt{\dfrac{{{\left( 1+\sin \theta \right)}^{2}}}{{{1}^{2}}-{{\sin }^{2}}\theta }}+\sqrt{\dfrac{{{\left( 1-\sin \theta \right)}^{2}}}{{{1}^{2}}-{{\sin }^{2}}\theta }}
Using the trigonometric identity, sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1, the denominator of the above expression can be expressed as
(1+sinθ)2cos2θ+(1sinθ)2cos2θ\Rightarrow \sqrt{\dfrac{{{\left( 1+\sin \theta \right)}^{2}}}{{{\cos }^{2}}\theta }}+\sqrt{\dfrac{{{\left( 1-\sin \theta \right)}^{2}}}{{{\cos }^{2}}\theta }}
canceling out the square and square root from the above expression, we get
(1+sinθ)cosθ+(1sinθ)cosθ\Rightarrow \dfrac{\left( 1+\sin \theta \right)}{\cos \theta }+\dfrac{\left( 1-\sin \theta \right)}{\cos \theta }
As the denominator of both terms is the same, we can add the numerator directly, by doing this we get
2cosθ\Rightarrow \dfrac{2}{\cos \theta }
Using secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta }, the above expression can be written as
2secθ=RHS\Rightarrow 2\sec \theta =RHS
LHS=RHS\therefore LHS=RHS
Hence, proved.

Note: To solve problems based on trigonometric functions, one should remember the trigonometric properties and the identities. The properties we used to prove the given statements are sin2θ+cos2θ=1&1+tan2θ=sec2θ{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\And 1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta , also secθ=1cosθ&cscθ=1sinθ\sec \theta =\dfrac{1}{\cos \theta }\And \csc \theta =\dfrac{1}{\sin \theta }.