Solveeit Logo

Question

Question: Prove that \(\arcsin \left( -x \right)=-\arcsin x,x\in \left[ -1,1 \right]\)...

Prove that arcsin(x)=arcsinx,x[1,1]\arcsin \left( -x \right)=-\arcsin x,x\in \left[ -1,1 \right]

Explanation

Solution

Hint: Use the fact that if y=arcsinxy=\arcsin x, then x=sinyx=\sin y. Assume y =arscsin(-x). Use the previously mentioned fact and write x in terms of y. Use the fact that sinx is an odd function. Finally, take inverse again and hence use the fact that if y[π2,π2]y\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right], then arcsin(siny)=y\arcsin \left( \sin y \right)=y and hence prove the result.

Complete Step-by-step answer:
Before dwelling into the proof of the above question, we must understand how sin1x{{\sin }^{-1}}x is defined even when sinx\sin x is not one-one.
We know that sinx is a periodic function.
Let us draw the graph of sinx

As is evident from the graph sinx is a repeated chunk of the graph of sinx within the interval [A,B]\left[ A,B \right] , and it attains all its possible values in the interval [A,C]\left[ A,C \right]. Here A=π2,B=3π2A=\dfrac{-\pi }{2},B=\dfrac{3\pi }{2} and C=π2C=\dfrac{\pi }{2}
Hence if we consider sinx in the interval [A, C], we will lose no value attained by sinx, and at the same time, sinx will be one-one and onto.
Hence arcsinx\arcsin x is defined over the domain [1,1]\left[ -1,1 \right], with codomain [π2,π2]\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right] as in the domain [π2,π2]\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right], sinx is one-one and Rsinx=[1,1]{{R}_{\sin x}}=\left[ -1,1 \right].
Now since arcsinx\arcsin x is the inverse of sinx it satisfies the fact that if y=arcsinxy=\arcsin x, then siny=x\sin y=x.
So let y = arcsin(-x), y[π2,π2]y\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]
Hence we have siny =- x.
Hence we have x=sinyx=-\sin y
Now since sinx is an odd function, we have x=sin(y)x=\sin \left( -y \right)
Taking arcsin on both sides, we get
arcsinx=arcsin(sin(y))\arcsin x=\arcsin \left( \sin \left( -y \right) \right)
Now since y[π2,π2]y\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right], we have y[π2,π2]-y\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]
We know that if y[π2,π2]y\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right], then arcsin(siny)=y\arcsin \left( \sin y \right)=y [Valid only in principal branch]
Hence we have
arcsinx=y y=arcsinx \begin{aligned} & \arcsin x=-y \\\ & \Rightarrow y=-\arcsin x \\\ \end{aligned}
Reverting to the original variable, we get
arcsin(x)=arcsinx\arcsin \left( -x \right)=-\arcsin x
Since -x is in the domain of arcsin\arcsin , we get
x[1,1]x[1,1]-x\in \left[ -1,1 \right]\Rightarrow x\in \left[ -1,1 \right]
Hence we have arcsin(x)=arcsin(x),x[1,1]\arcsin \left( -x \right)=-\arcsin \left( x \right),x\in \left[ -1,1 \right]

Note: [1] The above-specified codomain for arcsinx is called principal branch for arcsinx. We can select any branch as long as sinx\sin x is one-one and onto and Range =[1,1]=\left[ -1,1 \right]. Like instead of [π2,π2]\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right], we can select the interval [π2,3π2]\left[ \dfrac{\pi }{2},\dfrac{3\pi }{2} \right]. The above formula is valid only in the principal branch.