Solveeit Logo

Question

Question: Prove that \( 7\log \dfrac{{16}}{{15}} + 5\log \dfrac{{25}}{{24}} + 3\log \dfrac{{81}}{{80}} = \log ...

Prove that 7log1615+5log2524+3log8180=log27\log \dfrac{{16}}{{15}} + 5\log \dfrac{{25}}{{24}} + 3\log \dfrac{{81}}{{80}} = \log 2

Explanation

Solution

Hint : In order to prove the above equation , first take the left-hand side of the equation. Simplify the LHS by first separating all the terms using rule logb(mn)=logb(m)logb(n){\log _b}(\dfrac{m}{n}) = {\log _b}(m) - {\log _b}(n) . Now open the brackets and combine all the terms, and you will get the answer which is equal to RHS of the equation. Hence proved.

Complete step-by-step answer :
To Prove: 7log1615+5log2524+3log8180=log27\log \dfrac{{16}}{{15}} + 5\log \dfrac{{25}}{{24}} + 3\log \dfrac{{81}}{{80}} = \log 2
Proof:
In order to prove the above logarithmic expression,
Taking Left-Hand side (LHS)
LHS=7log1615+5log2524+3log8180LHS = 7\log \dfrac{{16}}{{15}} + 5\log \dfrac{{25}}{{24}} + 3\log \dfrac{{81}}{{80}}
To simplify the above expression, we must know the properties of logarithms and with the help of them we are going to rewriting the above expression
Using the property of logarithm logb(mn)=logb(m)logb(n){\log _b}(\dfrac{m}{n}) = {\log _b}(m) - {\log _b}(n) in all the three terms we get
=7(log16log15)+5(log25log24)+3(log81log80)= 7\left( {\log 16 - \log 15} \right) + 5\left( {\log 25 - \log 24} \right) + 3\left( {\log 81 - \log 80} \right)
=7(log24log(5×3))+5(log52log(8×3))+3(log92log(16×5)) =7(4log2log3log5)+5(2log5log23log3)+3(4log3log24log5) =28log27log37log5+10log515log25log3+12log312log23log5  = 7\left( {\log {2^4} - \log \left( {5 \times 3} \right)} \right) + 5\left( {\log {5^2} - \log \left( {8 \times 3} \right)} \right) + 3\left( {\log {9^2} - \log \left( {16 \times 5} \right)} \right) \\\ = 7\left( {4\log 2 - \log 3 - \log 5} \right) + 5\left( {2\log 5 - \log {2^3} - \log 3} \right) + 3\left( {4\log 3 - \log {2^4} - \log 5} \right) \\\ = 28\log 2 - 7\log 3 - 7\log 5 + 10\log 5 - 15\log 2 - 5\log 3 + 12\log 3 - 12\log 2 - 3\log 5 \\\
Now combining all the like terms , we get
=28log215log212log27log35log3+12log37log5+10log53log5 =28log227log212log3+12log3+10log510log5 =log2  = 28\log 2 - 15\log 2 - 12\log 2 - 7\log 3 - 5\log 3 + 12\log 3 - 7\log 5 + 10\log 5 - 3\log 5 \\\ = 28\log 2 - 27\log 2 - 12\log 3 + 12\log 3 + 10\log 5 - 10\log 5 \\\ = \log 2 \\\
LHS=log2LHS = \log 2
Now Taking Right-hand side
RHS=log2RHS = \log 2
LHS=RHSLHS = RHS
Hence proved

Note : 2. A logarithm is basically the reverse of a power or we can say when we calculate a logarithm of any number , we actually undo an exponentiation.
3.Any multiplication inside the logarithm can be transformed into addition of two separate logarithm values .
logb(mn)=logb(m)+logb(n){\log _b}(mn) = {\log _b}(m) + {\log _b}(n)
4. Any division inside the logarithm can be transformed into subtraction of two separate logarithm values .
logb(mn)=logb(m)logb(n){\log _b}(\dfrac{m}{n}) = {\log _b}(m) - {\log _b}(n)
5. Any exponent value on anything inside the logarithm can be transformed and moved out of the logarithm as a multiplier and vice versa.
nlogm=logmnn\log m = \log {m^n}
6. The above guidelines work just if the bases are the equivalent. For example, the expression logd(m)+logb(n){\log _d}(m) + {\log _b}(n) can't be improved, on the grounds that the bases (the "d" and the "b") are not the equivalent, similarly as x2 × y3 can't be disentangled on the grounds that the bases (the x and y) are not the equivalent.