Solveeit Logo

Question

Question: Prove that $4 \leq \int_{1}^{3} \sqrt{3+x^2} dx \leq 4\sqrt{3}$...

Prove that 4133+x2dx434 \leq \int_{1}^{3} \sqrt{3+x^2} dx \leq 4\sqrt{3}

Answer

The statement is true.

Explanation

Solution

Let f(x)=3+x2f(x) = \sqrt{3+x^2}. The function f(x)f(x) is increasing on [1,3][1, 3] because its derivative f(x)=x3+x2f'(x) = \frac{x}{\sqrt{3+x^2}} is positive for x[1,3]x \in [1, 3]. The minimum value of f(x)f(x) on [1,3][1, 3] is m=f(1)=3+12=2m = f(1) = \sqrt{3+1^2} = 2. The maximum value of f(x)f(x) on [1,3][1, 3] is M=f(3)=3+32=12=23M = f(3) = \sqrt{3+3^2} = \sqrt{12} = 2\sqrt{3}. Using the property m(ba)abf(x)dxM(ba)m(b-a) \leq \int_{a}^{b} f(x) dx \leq M(b-a), with a=1a=1 and b=3b=3, we get: 2(31)133+x2dx23(31)2(3-1) \leq \int_{1}^{3} \sqrt{3+x^2} dx \leq 2\sqrt{3}(3-1) 4133+x2dx434 \leq \int_{1}^{3} \sqrt{3+x^2} dx \leq 4\sqrt{3}