Solveeit Logo

Question

Question: Prove that, \({}^3{C_1} + {}^7{C_2} + {}^{11}{C_3} + ......... + {}^{(4n - 1)}{C_n} = 1 + \left( {2n...

Prove that, 3C1+7C2+11C3+.........+(4n1)Cn=1+(2n1)2n{}^3{C_1} + {}^7{C_2} + {}^{11}{C_3} + ......... + {}^{(4n - 1)}{C_n} = 1 + \left( {2n - 1} \right) \cdot {2^n}.

Explanation

Solution

Hint: Here the above equation is reduced to a series form and then apply a combination formula to prove.

Complete step-by-step answer:
Given, 3C1+7C2+11C3+.........+(4n1)Cn=1+(2n1)2n{}^3{C_1} + {}^7{C_2} + {}^{11}{C_3} + ......... + {}^{(4n - 1)}{C_n} = 1 + \left( {2n - 1} \right) \cdot {2^n}
Take LHS
This series is written as
r=1n(4r1)\sum\limits_{r = 1}^n {\left( {4r - 1} \right)} nCr^n{C_r}
As you know
nCr=n!(nr)!×r!^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)! \times r!}}
r=1n(4r1)\Rightarrow \sum\limits_{r = 1}^n {\left( {4r - 1} \right)} nCr^n{C_r} = r=1n(4r1)n!(nr)!×r!\sum\limits_{r = 1}^n {\left( {4r - 1} \right)} \dfrac{{n!}}{{\left( {n - r} \right)! \times r!}}
Now separate the summation
r=1n(4r)n!(nr)!×r!r=1nnCr\Rightarrow \sum\limits_{r = 1}^n {\left( {4r} \right)} \dfrac{{n!}}{{\left( {n - r} \right)! \times r!}} - \sum\limits_{r = 1}^n {^n{C_r}}
r=1n(4r)n(n1)!(nr)!×r(r1)!(nC1+nC2+nC3+......+nCn)\Rightarrow \sum\limits_{r = 1}^n {\left( {4r} \right)} \dfrac{{n\left( {n - 1} \right)!}}{{\left( {n - r} \right)! \times r\left( {r - 1} \right)!}} - \left( {^n{C_1}{ + ^n}{C_2}{ + ^n}{C_3} + ......{ + ^n}{C_n}} \right)
Now you know (n1)!(nr)!×(r1)!=n1Cr1\dfrac{{\left( {n - 1} \right)!}}{{\left( {n - r} \right)! \times \left( {r - 1} \right)!}}{ = ^{n - 1}}{C_{r - 1}} and (nC0+nC1+nC2+......+nCn1)=(1+1)n=2n\left( {^n{C_0}{ + ^n}{C_1}{ + ^n}{C_2} + ......{ + ^n}{C_{n - 1}}} \right) = {\left( {1 + 1} \right)^n} = {2^n}
According to {binomial expansion} and the value of nC0=1^n{C_0} = 1 , So apply this
r=1n(4n)\Rightarrow \sum\limits_{r = 1}^n {\left( {4n} \right)} n1Cr12n^{n - 1}{C_{r - 1}} - {2^n}
4n(n1C0+n1C1+n1C2+......+n1Cn1)(2n1)\Rightarrow 4n\left( {^{n - 1}{C_0}{ + ^{n - 1}}{C_1}{ + ^{n - 1}}{C_2} + ......{ + ^{n - 1}}{C_{n - 1}}} \right) - \left( {{2^n} - 1} \right)
You know according to binomial expansion (n1C0+n1C1+n1C2+......+n1Cn1)=(1+1)n1=2n1\left( {^{n - 1}{C_0}{ + ^{n - 1}}{C_1}{ + ^{n - 1}}{C_2} + ......{ + ^{n - 1}}{C_{n - 1}}} \right) = {\left( {1 + 1} \right)^{n - 1}} = {2^{n - 1}}
4n×2n12n+1\Rightarrow 4n \times {2^{n - 1}} - {2^n} + 1
2n×2n2n+1\Rightarrow 2n \times {2^n} - {2^n} + 1
1+(2n1)2n\Rightarrow 1 + \left( {2n - 1} \right){2^n} = RHS
Hence proved.

Note: In this type of question answer can be in any form but take care what you have to prove, you have to give an answer in that form.