Solveeit Logo

Question

Question: Prove that: $2sin^2 27 = cos36 - cos54$...

Prove that: 2sin227=cos36cos542sin^2 27 = cos36 - cos54

Answer

The identity is false.

Explanation

Solution

To prove the given identity 2sin227=cos36cos542\sin^2 27^\circ = \cos 36^\circ - \cos 54^\circ.

Let's evaluate the Left Hand Side (LHS) and the Right Hand Side (RHS) separately.

Left Hand Side (LHS): Using the double angle identity 2sin2θ=1cos2θ2\sin^2 \theta = 1 - \cos 2\theta: LHS =2sin227=1cos(2×27)=1cos54= 2\sin^2 27^\circ = 1 - \cos (2 \times 27^\circ) = 1 - \cos 54^\circ.

Right Hand Side (RHS): RHS =cos36cos54= \cos 36^\circ - \cos 54^\circ.

For the given identity to be true, we must have LHS = RHS. So, we need to prove: 1cos54=cos36cos541 - \cos 54^\circ = \cos 36^\circ - \cos 54^\circ

Adding cos54\cos 54^\circ to both sides of the equation: 1=cos361 = \cos 36^\circ

Now, let's check the value of cos36\cos 36^\circ. It is a standard trigonometric value: cos36=5+14\cos 36^\circ = \frac{\sqrt{5}+1}{4}

Since 5+141\frac{\sqrt{5}+1}{4} \neq 1, the statement 1=cos361 = \cos 36^\circ is false. Therefore, the original identity 2sin227=cos36cos542\sin^2 27^\circ = \cos 36^\circ - \cos 54^\circ is false.

Conclusion: The given identity 2sin227=cos36cos542\sin^2 27^\circ = \cos 36^\circ - \cos 54^\circ is incorrect.