Solveeit Logo

Question

Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles

Prove that. 2sin2π6+cosec27π6cos2π3=322sin^2 \frac{π}{6}+cosec^2 \frac{7π}{6}–cos^2 \frac{π}{3}=\frac{3}{2}

Answer

L.H.S. = 2sin2π6+cosec27π6cos2π32sin^2 \frac{π}{6}+cosec^2 \frac{7π}{6}–cos^2 \frac{π}{3}

=2(12)2+cosec2(π+π6)(12)2=2(\frac{1}{2})^2+cosec^2({\pi}+\frac{\pi}{6})(\frac{1}{2})^2

2×14+(cosecπ6)2(14)2×\frac{1}{4}+(-cosec\frac{\pi}{6})^2(\frac{1}{4})

=12+(2)2(14)=\frac{1}{2}+(-2)^2(\frac{1}{4})

=12+44=12+1=32=\frac{1}{2}+\frac{4}{4}=\frac{1}{2}+1=\frac{3}{2}

=R.H.S=R.H.S