Solveeit Logo

Question

Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles

Prove that 2sin23π4+2cos2π4+2sec2π3=102sin^2 \frac{3π}{4}+2\,cos^2 \frac{π}{4}+2\,sec^2 \frac{π}{3}=10

Answer

L.H.S. = 2sin23π4+2cos2π4+2sec2π32sin^2 \frac{3π}{4}+2\,cos^2 \frac{π}{4}+2\,sec^2 \frac{π}{3}

=2sin(ππ4)2+2(12)2+2(2)2=2\\{{sin{({\pi}\frac{\pi}{4})}}\\}^2+2(\frac{1}{√2})^2+2(2)^2

=2sinππ42+2×12+8=2\\{sin{\pi}\frac{\pi}{4}\\}^2+2×\frac{1}{2}+8

=2(12)2+1+8=2(\frac{1}{√2})^2+1+8

1+1+81+1+8

=10=10

=R.H.S=R.H.S