Solveeit Logo

Question

Question: Prove that \(2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\sec }^{-1}}\left( \dfrac{5\sqrt{2}}{7} ...

Prove that
2tan1(15)+sec1(527)+2tan1(18)=π42{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\sec }^{-1}}\left( \dfrac{5\sqrt{2}}{7} \right)+2{{\tan }^{-1}}\left( \dfrac{1}{8} \right)=\dfrac{\pi }{4}

Explanation

Solution

Hint: For solving this question we will use the formula 2tan1x=tan1(2x1x2)2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right) , tan2θ=sec2θ-1{{\tan }^{2}}\theta \text{=se}{{\text{c}}^{2}}\theta \text{-1} and tan1x+tan1y=tan1(x+y1xy){{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right) . After that, we will try to solve 2tan1(15)+sec1(527)+2tan1(18)2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\sec }^{-1}}\left( \dfrac{5\sqrt{2}}{7} \right)+2{{\tan }^{-1}}\left( \dfrac{1}{8} \right) and prove that, it is equal to tan1(1){{\tan }^{-1}}\left( 1 \right) . Then, we will prove the desired result easily.

Complete step-by-step solution -
Given:
We have to prove the following equation:
2tan1(15)+sec1(527)+2tan1(18)=π42{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\sec }^{-1}}\left( \dfrac{5\sqrt{2}}{7} \right)+2{{\tan }^{-1}}\left( \dfrac{1}{8} \right)=\dfrac{\pi }{4}
Now, let α=2tan1(15)\alpha =2{{\tan }^{-1}}\left( \dfrac{1}{5} \right) , β=sec1(527)\beta ={{\sec }^{-1}}\left( \dfrac{5\sqrt{2}}{7} \right) and γ=2tan1(18)\gamma =2{{\tan }^{-1}}\left( \dfrac{1}{8} \right) . So, we will solve for α\alpha , β\beta and γ\gamma separately. Then, we will find the value of α+β+γ\alpha +\beta +\gamma .
Now, before we proceed further we should know the following formulas:
2tan1x=tan1(2x1x2) (if 1<x<1)...............(1)2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)\text{ }\left( \text{if }-1 < x < 1 \right)...............\left( 1 \right)
tan2θ=sec2θ-1 ....................(2){{\tan }^{2}}\theta \text{=se}{{\text{c}}^{2}}\theta \text{-1 }....................\left( 2 \right)
tan1x+tan1y=tan1(x+y1xy) (if xy<1).............................(3){{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\text{ }\left( \text{if }xy<1 \right).............................\left( 3 \right)
tan11=π4..................................(4){{\tan }^{-1}}1=\dfrac{\pi }{4}..................................\left( 4 \right)
Now, we will simplify α\alpha , β\beta and γ\gamma separately with the help of the above four formulas.
Simplification of α=2tan1(15)\alpha =2{{\tan }^{-1}}\left( \dfrac{1}{5} \right) :
Now, we will use the formula from the equation (1) as 1<15<1-1 < \dfrac{1}{5} < 1 to write 2tan1(15)=tan1(512) 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)={{\tan }^{-1}}\left( \dfrac{5}{12} \right) . Then,
α=2tan1(15) α=tan1(2×151(15)2) α=tan1(2×5521) α=tan1(10251) α=tan1(1024) α=tan1(512)........................(5) \begin{aligned} & \alpha =2{{\tan }^{-1}}\left( \dfrac{1}{5} \right) \\\ & \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{2\times \dfrac{1}{5}}{1-{{\left( \dfrac{1}{5} \right)}^{2}}} \right) \\\ & \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{2\times 5}{{{5}^{2}}-1} \right) \\\ & \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{10}{25-1} \right) \\\ & \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{10}{24} \right) \\\ & \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{5}{12} \right)........................\left( 5 \right) \\\ \end{aligned}
Simplification of γ=2tan1(18)\gamma =2{{\tan }^{-1}}\left( \dfrac{1}{8} \right) :
Now, we will use the formula from the equation (1) as 1<18<1-1<\dfrac{1}{8}<1 to write 2tan1(18)=tan1(1663)2{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{16}{63} \right) . Then,
γ=2tan1(18) γ=tan1(2×181(18)2) γ=tan1(2×8821) γ=tan1(16641) γ=tan1(1663)........................(6) \begin{aligned} & \gamma =2{{\tan }^{-1}}\left( \dfrac{1}{8} \right) \\\ & \Rightarrow \gamma ={{\tan }^{-1}}\left( \dfrac{2\times \dfrac{1}{8}}{1-{{\left( \dfrac{1}{8} \right)}^{2}}} \right) \\\ & \Rightarrow \gamma ={{\tan }^{-1}}\left( \dfrac{2\times 8}{{{8}^{2}}-1} \right) \\\ & \Rightarrow \gamma ={{\tan }^{-1}}\left( \dfrac{16}{64-1} \right) \\\ & \Rightarrow \gamma ={{\tan }^{-1}}\left( \dfrac{16}{63} \right)........................\left( 6 \right) \\\ \end{aligned}
Simplification of β=sec1(527)\beta ={{\sec }^{-1}}\left( \dfrac{5\sqrt{2}}{7} \right) :
Now, we write secβ=527\sec \beta =\dfrac{5\sqrt{2}}{7} and apply the formula from the equation (2) to get the value of tanβ\tan \beta . Then,
tan2β=sec2β1 tan2β=(527)21 tan2β=50491 tan2β=149 tanβ=149 tanβ=17 \begin{aligned} & {{\tan }^{2}}\beta ={{\sec }^{2}}\beta -1 \\\ & \Rightarrow {{\tan }^{2}}\beta ={{\left( \dfrac{5\sqrt{2}}{7} \right)}^{2}}-1 \\\ & \Rightarrow {{\tan }^{2}}\beta =\dfrac{50}{49}-1 \\\ & \Rightarrow {{\tan }^{2}}\beta =\dfrac{1}{49} \\\ & \Rightarrow \tan \beta =\sqrt{\dfrac{1}{49}} \\\ & \Rightarrow \tan \beta =\dfrac{1}{7} \\\ \end{aligned}
Now, as 527>1\dfrac{5\sqrt{2}}{7}>1 so, we can say that, 0<sec1(527)<π20<{{\sec }^{-1}}\left( \dfrac{5\sqrt{2}}{7} \right)<\dfrac{\pi }{2} and as tanβ=17\tan \beta =\dfrac{1}{7} so, we can also write β=tan1(17)\beta ={{\tan }^{-1}}\left( \dfrac{1}{7} \right) . Then,
β=tan1(17)..........................(7)\beta ={{\tan }^{-1}}\left( \dfrac{1}{7} \right)..........................\left( 7 \right)
Now, we will calculate the value of 2tan1(15)+sec1(527)+2tan1(18)2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\sec }^{-1}}\left( \dfrac{5\sqrt{2}}{7} \right)+2{{\tan }^{-1}}\left( \dfrac{1}{8} \right) . And as per our assumption α=2tan1(15)\alpha =2{{\tan }^{-1}}\left( \dfrac{1}{5} \right) , β=sec1(527)\beta ={{\sec }^{-1}}\left( \dfrac{5\sqrt{2}}{7} \right) and γ=2tan1(18)\gamma =2{{\tan }^{-1}}\left( \dfrac{1}{8} \right) . Then,
2tan1(15)+sec1(527)+2tan1(18) α+β+γ \begin{aligned} & 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\sec }^{-1}}\left( \dfrac{5\sqrt{2}}{7} \right)+2{{\tan }^{-1}}\left( \dfrac{1}{8} \right) \\\ & \Rightarrow \alpha +\beta +\gamma \\\ \end{aligned}
Now, we put α=tan1(512)\alpha ={{\tan }^{-1}}\left( \dfrac{5}{12} \right) from equation (5), γ=tan1(1663)\gamma ={{\tan }^{-1}}\left( \dfrac{16}{63} \right) from equation (6) and β=tan1(17)\beta ={{\tan }^{-1}}\left( \dfrac{1}{7} \right) from equation (7) in the above expression. Then,
α+β+γ tan1(512)+tan1(17)+tan1(1663) \begin{aligned} & \alpha +\beta +\gamma \\\ & \Rightarrow {{\tan }^{-1}}\left( \dfrac{5}{12} \right)+{{\tan }^{-1}}\left( \dfrac{1}{7} \right)+{{\tan }^{-1}}\left( \dfrac{16}{63} \right) \\\ \end{aligned}
Now, we will use the formula from equation (3) as 512×17=584<1\dfrac{5}{12}\times \dfrac{1}{7}=\dfrac{5}{84}<1 to write tan1(512)+tan1(17)=tan1(4779){{\tan }^{-1}}\left( \dfrac{5}{12} \right)+{{\tan }^{-1}}\left( \dfrac{1}{7} \right)={{\tan }^{-1}}\left( \dfrac{47}{79} \right) in the above line. Then,
tan1(512)+tan1(17)+tan1(1663) tan1(512+171512×17)+tan1(1663) tan1(5×7+127×125)+tan1(1663) tan1(35+12845)+tan1(1663) tan1(4779)+tan1(1663) \begin{aligned} & {{\tan }^{-1}}\left( \dfrac{5}{12} \right)+{{\tan }^{-1}}\left( \dfrac{1}{7} \right)+{{\tan }^{-1}}\left( \dfrac{16}{63} \right) \\\ & \Rightarrow {{\tan }^{-1}}\left( \dfrac{\dfrac{5}{12}+\dfrac{1}{7}}{1-\dfrac{5}{12}\times \dfrac{1}{7}} \right)+{{\tan }^{-1}}\left( \dfrac{16}{63} \right) \\\ & \Rightarrow {{\tan }^{-1}}\left( \dfrac{5\times 7+12}{7\times 12-5} \right)+{{\tan }^{-1}}\left( \dfrac{16}{63} \right) \\\ & \Rightarrow {{\tan }^{-1}}\left( \dfrac{35+12}{84-5} \right)+{{\tan }^{-1}}\left( \dfrac{16}{63} \right) \\\ & \Rightarrow {{\tan }^{-1}}\left( \dfrac{47}{79} \right)+{{\tan }^{-1}}\left( \dfrac{16}{63} \right) \\\ \end{aligned}
Now, we will use the formula from equation (3) as 4779×1663=7524788<1\dfrac{47}{79}\times \dfrac{16}{63}=\dfrac{752}{4788}<1 to write tan1(4779)+tan1(1663)=tan1(1){{\tan }^{-1}}\left( \dfrac{47}{79} \right)+{{\tan }^{-1}}\left( \dfrac{16}{63} \right)={{\tan }^{-1}}\left( 1 \right) in the above line. Then,
tan1(4779)+tan1(1663) tan1(4779+166314779×1663) tan1(47×63+16×7979×6347×16) tan1(2961+12644977752) tan1(42254225) tan1(1) \begin{aligned} & {{\tan }^{-1}}\left( \dfrac{47}{79} \right)+{{\tan }^{-1}}\left( \dfrac{16}{63} \right) \\\ & \Rightarrow {{\tan }^{-1}}\left( \dfrac{\dfrac{47}{79}+\dfrac{16}{63}}{1-\dfrac{47}{79}\times \dfrac{16}{63}} \right) \\\ & \Rightarrow {{\tan }^{-1}}\left( \dfrac{47\times 63+16\times 79}{79\times 63-47\times 16} \right) \\\ & \Rightarrow {{\tan }^{-1}}\left( \dfrac{2961+1264}{4977-752} \right) \\\ & \Rightarrow {{\tan }^{-1}}\left( \dfrac{4225}{4225} \right) \\\ & \Rightarrow {{\tan }^{-1}}\left( 1 \right) \\\ \end{aligned}
Now, from the formula from the equation (4), we can write tan1(1)=π4{{\tan }^{-1}}\left( 1 \right)=\dfrac{\pi }{4} . Then,
tan1(1) π4 \begin{aligned} & {{\tan }^{-1}}\left( 1 \right) \\\ & \Rightarrow \dfrac{\pi }{4} \\\ \end{aligned}
Now, from the above result, we conclude that, 2tan1(15)+sec1(527)+2tan1(18)=π42{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\sec }^{-1}}\left( \dfrac{5\sqrt{2}}{7} \right)+2{{\tan }^{-1}}\left( \dfrac{1}{8} \right)=\dfrac{\pi }{4} .
Thus, 2tan1(15)+sec1(527)+2tan1(18)=π42{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\sec }^{-1}}\left( \dfrac{5\sqrt{2}}{7} \right)+2{{\tan }^{-1}}\left( \dfrac{1}{8} \right)=\dfrac{\pi }{4} .
Hence, proved.

Note: Here, the student should understand what is asked in the question and then proceed in the right direction to prove the desired result quickly. Moreover, we should use formulas tan1x+tan1y=tan1(x+y1xy){{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right) and tan2θ=sec2θ-1{{\tan }^{2}}\theta \text{=se}{{\text{c}}^{2}}\theta \text{-1} to avoid tough calculation. And avoid calculation mistakes while solving.