Question
Question: Prove that \[2\sin \dfrac{\pi }{6}\sec \dfrac{\pi }{3}-4\sin \dfrac{5\pi }{6}\cot \dfrac{\pi }{4}=...
Prove that
2sin6πsec3π−4sin65πcot4π=0
Solution
Hint: We have the trigonometric values in the given function that is sin6π=21and sec3π=2, sin65π=21 because it can be written as sin(π−6π)so it is in second quadrant and sin is positive in that quadrant, cot4π=1
Complete step-by-step answer:
The given trigonometric function is 2sin6πsec3π−4sin65πcot4π
We know that value of trigonometric function sin6πis given by
sin6π=21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(1)
We know that the value of trigonometric function sec3πis given by
sec3π=2. . . . . . . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . . .(2)
We know that the value of trigonometric function sin65πis given by
sin65π=21. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .(3)
We know that the value of trigonometric function cot4πis given by
cot4π=1. . . . .. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .(4)
Substituting the above values we will get
2×21×2−4×21×1
=2−2
=0
Hence proved.
Note: If they have given trigonometric values with angles greater than 90 degrees then write them as 90±θ,180±θ,270±θ,360±θand then find the corresponding value. Note that in the first quadrant all are positive and in the 2nd sine angles are positive and in 3rd tan are positive and in 4th cos angles are positive.