Solveeit Logo

Question

Question: Prove that \(2{{\sin }^{2}}\dfrac{\pi }{6}+{{\operatorname{cosec}}^{2}}\dfrac{7\pi }{6}{{\cos }^{2}}...

Prove that 2sin2π6+cosec27π6cos2π3=322{{\sin }^{2}}\dfrac{\pi }{6}+{{\operatorname{cosec}}^{2}}\dfrac{7\pi }{6}{{\cos }^{2}}\dfrac{\pi }{3}=\dfrac{3}{2}.

Explanation

Solution

To prove the above trigonometric equation, first of all we have to start solving from the left-hand side. Then convert the equation by replacing π\pi with 180{{180}^{\circ }}. After that we can solve cosec210\operatorname{cosec}{{210}^{\circ }}, but before that we can first find the value for sin210\sin {{210}^{\circ }} and then find cosec210\operatorname{cosec}{{210}^{\circ }} by taking the reciprocal of sin210\sin {{210}^{\circ }}. Then substitute the values and square the values. Then we have to solve it to reach the final answer.

Complete step-by-step answer :
First of all we have to start from the left-hand side, so,
L.H.S: 2sin2π6+cosec27π6cos2π32{{\sin }^{2}}\dfrac{\pi }{6}+{{\operatorname{cosec}}^{2}}\dfrac{7\pi }{6}{{\cos }^{2}}\dfrac{\pi }{3}.
Now, we have to put π=180\pi ={{180}^{\circ }}, so we get,
2sin21806+cosec27×1806cos218032{{\sin }^{2}}\dfrac{{{180}^{\circ }}}{6}+{{\operatorname{cosec}}^{2}}\dfrac{7\times {{180}^{\circ }}}{6}{{\cos }^{2}}\dfrac{{{180}^{\circ }}}{3}
On further solving, we get,
2sin230+cosec2210cos2602{{\sin }^{2}}{{30}^{\circ }}+{{\operatorname{cosec}}^{2}}{{210}^{\circ }}{{\cos }^{2}}{{60}^{\circ }}
Now, we know the value of sin30\sin {{30}^{\circ }} and cos60\cos {{60}^{\circ }}, but we have to find the value of cosec210\operatorname{cosec}{{210}^{\circ }}. To find that value, first we have to find the value of sin210\sin {{210}^{\circ }}.
We can write sin210\sin {{210}^{\circ }} as,
sin210=sin(180+30)\sin {{210}^{\circ }}=\sin (180+30)
sin30\Rightarrow -\sin {{30}^{\circ }}
12\Rightarrow -\dfrac{1}{2}
We got sin(180+30)=12\sin (180+30)=\dfrac{-1}{2} because sin(180+30)\sin (180+30)lies in the third quadrant and in the third quadrant the value of sin is negative. That is why sin(180+30)=12\sin (180+30)=\dfrac{-1}{2}. We have to remember the signs of the trigonometric function in each quadrant

As we have got the value of sin210\sin {{210}^{\circ }}, we can find the value of cosec210\operatorname{cosec}{{210}^{\circ }} by taking the reciprocal of sin210\sin {{210}^{\circ }}.

So, the value of cosec210=(1(12))=2\operatorname{cosec}{{210}^{\circ }}=\left( \dfrac{1}{\left( \dfrac{-1}{2} \right)} \right)=-2.
Now, we can write as,
L.H.S: 2sin2π6+cosec27π6cos2π32{{\sin }^{2}}\dfrac{\pi }{6}+{{\operatorname{cosec}}^{2}}\dfrac{7\pi }{6}{{\cos }^{2}}\dfrac{\pi }{3}
2sin230+cosec2210cos260\Rightarrow 2{{\sin }^{2}}{{30}^{\circ }}+{{\operatorname{cosec}}^{2}}{{210}^{\circ }}{{\cos }^{2}}{{60}^{\circ }}
We know the value of sin30=12\sin {{30}^{\circ }}=\dfrac{1}{2} and cos60=12\cos {{60}^{\circ }}=\dfrac{1}{2}. On substituting the values we get,
2(12)2+(2)2×(12)2\Rightarrow 2{{\left( \dfrac{1}{2} \right)}^{2}}+{{\left( -2 \right)}^{2}}\times {{\left( \dfrac{1}{2} \right)}^{2}}
On solving, we get,
2(14)+4×(14)\Rightarrow 2\left( \dfrac{1}{4} \right)+4\times \left( \dfrac{1}{4} \right)
On further solving, we get
(12)+1\Rightarrow \left( \dfrac{1}{2} \right)+1
32=R.H.S\Rightarrow \dfrac{3}{2}=R.H.S
Hence proved that 2sin2π6+cosec27π6cos2π3=322{{\sin }^{2}}\dfrac{\pi }{6}+{{\operatorname{cosec}}^{2}}\dfrac{7\pi }{6}{{\cos }^{2}}\dfrac{\pi }{3}=\dfrac{3}{2}.

Note : The alternative method for finding sin210\sin {{210}^{\circ }} is that, it can also be written as,
sin210=sin(27060)\sin {{210}^{\circ }}=\sin (270-60)
We know that, sin(27060)=cos60\sin (270-60)=-\cos {{60}^{\circ }}
Therefore, we get the value of sin210\sin {{210}^{\circ }} is 12-\dfrac{1}{2}.
So, it is important to keep in mind the changes of sign in each quadrant.