Solveeit Logo

Question

Question: Prove that: \(2{\sin ^2}\dfrac{\pi }{6} + {\operatorname{cosec} ^2}\dfrac{{7\pi }}{6}{\cos ^2}\dfr...

Prove that:
2sin2π6+cosec27π6cos2π3=322{\sin ^2}\dfrac{\pi }{6} + {\operatorname{cosec} ^2}\dfrac{{7\pi }}{6}{\cos ^2}\dfrac{\pi }{3} = \dfrac{3}{2}

Explanation

Solution

Note that, since 7π6 is in third quadrant, therefore cosec7π6 is negative.{\text{since }}\dfrac{{7\pi }}{6}{\text{ is in third quadrant, therefore }}\operatorname{cosec} \dfrac{{7\pi }}{6}{\text{ is negative}}{\text{.}}
Then in the left hand side, substitute the values of sinπ6\sin \dfrac{\pi }{6}, cosec7π6\operatorname{cosec} \dfrac{{7\pi }}{6} and cosπ3\cos \dfrac{\pi }{3}.
And on solving we get the desired result.

Complete step-by-step answer:
Given to prove that 2sin2π6+cosec27π6cos2π3=322{\sin ^2}\dfrac{\pi }{6} + {\operatorname{cosec} ^2}\dfrac{{7\pi }}{6}{\cos ^2}\dfrac{\pi }{3} = \dfrac{3}{2}
Left hand side is given by,
2sin2π6+cosec27π6cos2π32{\sin ^2}\dfrac{\pi }{6} + {\operatorname{cosec} ^2}\dfrac{{7\pi }}{6}{\cos ^2}\dfrac{\pi }{3}
The above expression can be written as,
=2sin2π6+cosec2(π+π6)cos2π3= 2{\sin ^2}\dfrac{\pi }{6} + {\operatorname{cosec} ^2}\left( {\pi + \dfrac{\pi }{6}} \right){\cos ^2}\dfrac{\pi }{3}
Since, 7π6\dfrac{{7\pi }}{6} is in the third quadrant, therefore cosec7π6 \operatorname{cosec} \dfrac{{7\pi }}{6}{\text{ }} is negative,
=2sin2π6+(cosecπ6)2cos2π3 = 2{\sin ^2}\dfrac{\pi }{6} + {\left( { - \operatorname{cosec} \dfrac{\pi }{6}} \right)^2}{\cos ^2}\dfrac{\pi }{3}{\text{ }}
On simplification we get,
=2sin2π6+cosec2π6cos2π3= 2{\sin ^2}\dfrac{\pi }{6} + {\operatorname{cosec} ^2}\dfrac{\pi }{6}{\cos ^2}\dfrac{\pi }{3}
Using sinπ6=12,cosπ3=12,cosecπ6=2\sin \dfrac{\pi }{6} = \dfrac{1}{2},\cos \dfrac{\pi }{3} = \dfrac{1}{2},\cos ec\dfrac{\pi }{6} = 2, we get,
=2×(12)2+(2)2×(12)2= 2 \times {\left( {\dfrac{1}{2}} \right)^2} + {\left( 2 \right)^2} \times {\left( {\dfrac{1}{2}} \right)^2}
On squaring we get,
=(2×14)+(4×14)= \left( {2 \times \dfrac{1}{4}} \right) + \left( {4 \times \dfrac{1}{4}} \right)
On simplification we get,
=12+1= \dfrac{1}{2} + 1
=32= \dfrac{3}{2}
= Right hand side
Hence, 2sin2π6+cosec27π6cos2π3=322{\sin ^2}\dfrac{\pi }{6} + {\operatorname{cosec} ^2}\dfrac{{7\pi }}{6}{\cos ^2}\dfrac{\pi }{3} = \dfrac{3}{2} (proved).

Note: Note the following important formulae:
1.cosx=1secx\cos x = \dfrac{1}{{\sec x}} , sinx=1cosecx\sin x = \dfrac{1}{{\cos ecx}} , tanx=1cotx\tan x = \dfrac{1}{{\cot x}}
2.sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1
3.sec2xtan2x=1{\sec ^2}x - {\tan ^2}x = 1
4.cosec2xcot2x=1{\operatorname{cosec} ^2}x - {\cot ^2}x = 1
5.sin(x)=sinx\sin ( - x) = - \sin x
6.cos(x)=cosx\cos ( - x) = \cos x
7.tan(x)=tanx\tan ( - x) = - \tan x
8.sin(2nπ±x)=sinx , period 2π or 360\sin \left( {2n\pi \pm x} \right) = \sin x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }
9.cos(2nπ±x)=cosx , period 2π or 360\cos \left( {2n\pi \pm x} \right) = \cos x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }
10.tan(nπ±x)=tanx , period π or 180\tan \left( {n\pi \pm x} \right) = \tan x{\text{ , period }}\pi {\text{ or 18}}{0^ \circ }
Sign convention:

sin2x=2sinxcosx\sin 2x = 2\sin x\cos x
cos2x=cos2xsin2x=12sin2x=2cos2x1\cos 2x = {\cos ^2}x - {\sin ^2}x = 1 - 2{\sin ^2}x = 2{\cos ^2}x - 1
tan2x=2tanx1tan2x=2cotxtanx\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}} = \dfrac{2}{{\cot x - \tan x}}
Also, the trigonometric ratios of the standard angles are given by

| 00^\circ | 3030^\circ | 4545^\circ | 6060^\circ | 9090^\circ
---|---|---|---|---|---
Sinx\operatorname{Sin} x| 0| 12\dfrac{1}{2} | 12\dfrac{1}{{\sqrt 2 }} | 32\dfrac{{\sqrt 3 }}{2} | 1
Cosx\operatorname{Cos} x| 1| 32\dfrac{{\sqrt 3 }}{2}| 12\dfrac{1}{{\sqrt 2 }}| 12\dfrac{1}{2}| 0
Tanx\operatorname{Tan} x| 0| 13\dfrac{1}{{\sqrt 3 }} | 1| 3\sqrt 3 | Undefined
CotxCotx| undefined| 3\sqrt 3 | 1| 13\dfrac{1}{{\sqrt 3 }}| 0
cosecx\cos ecx| undefined| 2| 2\sqrt 2 | 23\dfrac{2}{{\sqrt 3 }}| 1
Secx\operatorname{Sec} x| 1| 23\dfrac{2}{{\sqrt 3 }}| 2\sqrt 2 | 2| Undefined