Question
Question: Prove that: \(2{\sin ^2}\dfrac{{3\pi }}{4} + 2{\cos ^2}\dfrac{\pi }{4} + 2{\sec ^2}\dfrac{\pi }{3}...
Prove that:
2sin243π+2cos24π+2sec23π=10
Solution
Note that, since 43π is in second quadrant, therefore sin43π is positive.
Then in the left hand side, substitute the values of sin43π, cos4π and sec3π.
In solving it we will reach our desired solution.
Complete step-by-step answer:
Given that, to prove 2sin243π+2cos24π+2sec23π=10
Left hand side:
=2sin243π+2cos24π+2sec23π
The above expression can be written as,
=2sin2(π−4π)+2cos24π+2sec23π
Since 43π is in the second quadrant, therefore sin43π is positive
=2(sin4π)2+2cos24π+2sec23π
Using, sin4π=21,cos4π=21,sec3π=2, we get,
=2×(21)2+2×(21)2+2×(2)2
On squaring we get,
=2×21+2×21+2×4
On simplification we get,
=1+1+8
=10
= Right hand side
Therefore, 2sin243π+2cos24π+2sec23π=10 (proved).
Note: Note the following important formulae:
1.cosx=secx1 , sinx=cosecx1 , tanx=cotx1
2.sin2x+cos2x=1
3.sec2x−tan2x=1
4.cosec2x−cot2x=1
5.sin(−x)=−sinx
6.cos(−x)=cosx
7.tan(−x)=−tanx
8.sin(2nπ±x)=sinx , period 2π or 360∘
9.cos(2nπ±x)=cosx , period 2π or 360∘
10.tan(nπ±x)=tanx , period π or 180∘
Sign convention:
sin2x=2sinxcosx
cos2x=cos2x−sin2x=1−2sin2x=2cos2x−1
tan2x=1−tan2x2tanx=cotx−tanx2
Also, the trigonometric ratios of the standard angles are given by
| 0∘| 30∘| 45∘| 60∘| 90∘
---|---|---|---|---|---
Sinx| 0| 21 | 21 | 23 | 1
Cosx| 1| 23| 21| 21| 0
Tanx| 0| 31 | 1| 3| Undefined
Cotx| undefined| 3| 1| 31| 0
cosecx| undefined| 2| 2| 32| 1
Secx| 1| 32| 2| 2| Undefined