Solveeit Logo

Question

Question: Prove that \(2\cos \dfrac{\pi }{13}\cos \dfrac{9\pi }{13}+\cos \dfrac{3\pi }{13}+\cos \dfrac{5\pi }{...

Prove that 2cosπ13cos9π13+cos3π13+cos5π13=02\cos \dfrac{\pi }{13}\cos \dfrac{9\pi }{13}+\cos \dfrac{3\pi }{13}+\cos \dfrac{5\pi }{13}=0.

Explanation

Solution

Hint: Change 2cosπ13cos9π132\cos \dfrac{\pi }{13}\cos \dfrac{9\pi }{13} into the sum of cosines of required angles by using the product to sum formula of cosine given by: 2cosAcosB=cos(A+B)+cos(AB)2\cos A\cos B=\cos \left( A+B \right)+\cos \left( A-B \right). Now, use the supplementary angle rule given by: cosθ=cos(πθ)\cos \theta =-\cos \left( \pi -\theta \right) to change the angle of cosine obtained by product to sum rule. Cancel all the terms to get the answer 0.

Complete step-by-step answer:
We have been given,
L.H.S=2cosπ13cos9π13+cos3π13+cos5π13L.H.S=2\cos \dfrac{\pi }{13}\cos \dfrac{9\pi }{13}+\cos \dfrac{3\pi }{13}+\cos \dfrac{5\pi }{13}
Using the product to sum formula of cosine: 2cosAcosB=cos(A+B)+cos(AB)2\cos A\cos B=\cos \left( A+B \right)+\cos \left( A-B \right), we get,
L.H.S=cos(π13+9π13)+cos(π139π13)+cos3π13+cos5π13 =cos(10π13)+cos(8π13)+cos3π13+cos5π13 \begin{aligned} & L.H.S=\cos \left( \dfrac{\pi }{13}+\dfrac{9\pi }{13} \right)+\cos \left( \dfrac{\pi }{13}-\dfrac{9\pi }{13} \right)+\cos \dfrac{3\pi }{13}+\cos \dfrac{5\pi }{13} \\\ & =\cos \left( \dfrac{10\pi }{13} \right)+\cos \left( \dfrac{-8\pi }{13} \right)+\cos \dfrac{3\pi }{13}+\cos \dfrac{5\pi }{13} \\\ \end{aligned}
We know that, cos(θ)=cosθ\cos \left( -\theta \right)=\cos \theta ,
L.H.S=cos(10π13)+cos(8π13)+cos3π13+cos5π13L.H.S=\cos \left( \dfrac{10\pi }{13} \right)+\cos \left( \dfrac{8\pi }{13} \right)+\cos \dfrac{3\pi }{13}+\cos \dfrac{5\pi }{13}
Now, using supplementary angle change formula, given by: cosθ=cos(πθ)\cos \theta =-\cos \left( \pi -\theta \right), for cos(10π13)\cos \left( \dfrac{10\pi }{13} \right) and cos(8π13)\cos \left( \dfrac{8\pi }{13} \right), we get,
L.H.S=cos(π10π13)+(cos(π8π13))+cos3π13+cos5π13 =cos(13π10π13)cos(13π8π13)+cos3π13+cos5π13 =cos3π13cos5π13+cos3π13+cos5π13 \begin{aligned} & L.H.S=-\cos \left( \pi -\dfrac{10\pi }{13} \right)+\left( -\cos \left( \pi -\dfrac{8\pi }{13} \right) \right)+\cos \dfrac{3\pi }{13}+\cos \dfrac{5\pi }{13} \\\ & =-\cos \left( \dfrac{13\pi -10\pi }{13} \right)-\cos \left( \dfrac{13\pi -8\pi }{13} \right)+\cos \dfrac{3\pi }{13}+\cos \dfrac{5\pi }{13} \\\ & =-\cos \dfrac{3\pi }{13}-\cos \dfrac{5\pi }{13}+\cos \dfrac{3\pi }{13}+\cos \dfrac{5\pi }{13} \\\ \end{aligned}
Now, cancelling the common terms, we get,
L.H.S=cos3π13cos3π13+cos5π13cos5π13 =0 =R.H.S \begin{aligned} & L.H.S=\cos \dfrac{3\pi }{13}-\cos \dfrac{3\pi }{13}+\cos \dfrac{5\pi }{13}-\cos \dfrac{5\pi }{13} \\\ & =0 \\\ & =R.H.S \\\ \end{aligned}

Note: One may note that there are certain other approaches to solve the above question. Here, we have changed the product of cosines into the sum of cosines leaving the two last terms as it is. One may also apply the reverse process. Take the sum of cos3π13\cos \dfrac{3\pi }{13} and cos5π13\cos \dfrac{5\pi }{13} by using the formula: cosA+cosB=2cos(A+B2)cos(AB2)\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right), while leaving the product of cosines given in the first term as it is. Now, again apply the supplementary angle rule given by: cosθ=cos(πθ)\cos \theta =-\cos \left( \pi -\theta \right) to change the angle of cosine obtained by the sum to the product rule. Cancel all the terms and get the value of the expression equal to 0.