Solveeit Logo

Question

Question: Prove that \[2\cos \dfrac{\pi }{{13}}\cos \dfrac{{9\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}} + \cos ...

Prove that 2cosπ13cos9π13+cos3π13+cos5π13=02\cos \dfrac{\pi }{{13}}\cos \dfrac{{9\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}} = 0

Explanation

Solution

Here we use the property of trigonometry 2cosAcosB=cos(A+B)+cos(AB)2\cos A\cos B = \cos (A + B) + \cos (A - B) to solve first part of the equation and then we group together two pairs of values in cos on which we apply the formula cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2\cos (\dfrac{{A + B}}{2})\cos (\dfrac{{A - B}}{2}).

Complete step-by-step answer:
First we solve 2cosπ13cos9π132\cos \dfrac{\pi }{{13}}\cos \dfrac{{9\pi }}{{13}}by using the identity 2cosAcosB=cos(A+B)+cos(AB)2\cos A\cos B = \cos (A + B) + \cos (A - B)
Where A=π13,B=9π13A = \dfrac{\pi }{{13}},B = \dfrac{{9\pi }}{{13}}
So, by substituting the values we can write.
2cosπ13cos9π13=cos(π13+9π13)+cos(π139π13)\Rightarrow 2\cos \dfrac{\pi }{{13}}\cos \dfrac{{9\pi }}{{13}} = \cos (\dfrac{\pi }{{13}} + \dfrac{{9\pi }}{{13}}) + \cos (\dfrac{\pi }{{13}} - \dfrac{{9\pi }}{{13}})
Take LCM of the angles within the bracket.

2cosπ13cos9π13=cos(π+9π13)+cos(π9π13) 2cosπ13cos9π13=cos(10π13)+cos(8π13)  \Rightarrow 2\cos \dfrac{\pi }{{13}}\cos \dfrac{{9\pi }}{{13}} = \cos (\dfrac{{\pi + 9\pi }}{{13}}) + \cos (\dfrac{{\pi - 9\pi }}{{13}}) \\\ \Rightarrow 2\cos \dfrac{\pi }{{13}}\cos \dfrac{{9\pi }}{{13}} = \cos (\dfrac{{10\pi }}{{13}}) + \cos (\dfrac{{ - 8\pi }}{{13}}) \\\

Since we know cosine is an even function, which means that cos(x)=cos(x)\cos ( - x) = \cos (x)
Here value of x=8π13x = - \dfrac{{8\pi }}{{13}}
So, substitute the value of cos(8π13)=cos(8π13)\cos ( - \dfrac{{8\pi }}{{13}}) = \cos (\dfrac{{8\pi }}{{13}})in the equation.
2cosπ13cos9π13=cos(10π13)+cos(8π13)\Rightarrow 2\cos \dfrac{\pi }{{13}}\cos \dfrac{{9\pi }}{{13}} = \cos (\dfrac{{10\pi }}{{13}}) + \cos (\dfrac{{8\pi }}{{13}}) … (i)
Now we substitute the value from equation (i) on the left hand side of the equation.
2cosπ13cos9π13+cos3π13+cos5π13=cos10π13+cos8π13+cos3π13+cos5π13\Rightarrow 2\cos \dfrac{\pi }{{13}}\cos \dfrac{{9\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}} = \cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}} … (ii)
Now we use the formula cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2\cos (\dfrac{{A + B}}{2})\cos (\dfrac{{A - B}}{2})in two separate pairs.
We make pairs such that when we add the numerator it gets cancelled by the denominator and gives us an angle whose cosine is known to us.
We make a pair of (cos10π13+cos3π13)\left( {\cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}}} \right)and other pair of (cos8π13+cos5π13)\left( {\cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}} \right)
First we solve (cos10π13+cos3π13)\left( {\cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}}} \right), where A=10π13,B=3π13A = \dfrac{{10\pi }}{{13}},B = \dfrac{{3\pi }}{{13}}
(cos10π13+cos3π13)=2cos(10π13+3π132)cos(10π133π132)\Rightarrow \left( {\cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}}} \right) = 2\cos \left( {\dfrac{{\dfrac{{10\pi }}{{13}} + \dfrac{{3\pi }}{{13}}}}{2}} \right)\cos \left( {\dfrac{{\dfrac{{10\pi }}{{13}} - \dfrac{{3\pi }}{{13}}}}{2}} \right)
Taking LCM in the numerator of the angles inside the bracket.

(cos10π13+cos3π13)=2cos(10π+3π132)cos(10π3π132) (cos10π13+cos3π13)=2cos(13π132)cos(7π132)  \Rightarrow \left( {\cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}}} \right) = 2\cos \left( {\dfrac{{\dfrac{{10\pi + 3\pi }}{{13}}}}{2}} \right)\cos \left( {\dfrac{{\dfrac{{10\pi - 3\pi }}{{13}}}}{2}} \right) \\\ \Rightarrow \left( {\cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}}} \right) = 2\cos \left( {\dfrac{{\dfrac{{13\pi }}{{13}}}}{2}} \right)\cos \left( {\dfrac{{\dfrac{{7\pi }}{{13}}}}{2}} \right) \\\

Cancelling the same term from numerator and denominator in the angle.
(cos10π13+cos3π13)=2cos(π2)cos(7π26)\Rightarrow \left( {\cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}}} \right) = 2\cos \left( {\dfrac{\pi }{2}} \right)\cos \left( {\dfrac{{7\pi }}{{26}}} \right)
Since we know cosπ2=0\cos \dfrac{\pi }{2} = 0
(cos10π13+cos3π13)=2×0×cos(7π26)=0\Rightarrow \left( {\cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}}} \right) = 2 \times 0 \times \cos \left( {\dfrac{{7\pi }}{{26}}} \right) = 0 … (iii)
Now we solve(cos8π13+cos5π13)\left( {\cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}} \right), where A=8π13,B=5π13A = \dfrac{{8\pi }}{{13}},B = \dfrac{{5\pi }}{{13}}
(cos8π13+cos5π13)=2cos(8π13+5π132)cos(8π135π132)\Rightarrow \left( {\cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}} \right) = 2\cos \left( {\dfrac{{\dfrac{{8\pi }}{{13}} + \dfrac{{5\pi }}{{13}}}}{2}} \right)\cos \left( {\dfrac{{\dfrac{{8\pi }}{{13}} - \dfrac{{5\pi }}{{13}}}}{2}} \right)
Taking LCM in the numerator of the angles inside the bracket.
(cos8π13+cos5π13)=2cos(8π+5π132)cos(8π5π132)\Rightarrow \left( {\cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}} \right) = 2\cos \left( {\dfrac{{\dfrac{{8\pi + 5\pi }}{{13}}}}{2}} \right)\cos \left( {\dfrac{{\dfrac{{8\pi - 5\pi }}{{13}}}}{2}} \right)
(cos8π13+cos5π13)=2cos(13π132)cos(3π132)\Rightarrow \left( {\cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}} \right) = 2\cos \left( {\dfrac{{\dfrac{{13\pi }}{{13}}}}{2}} \right)\cos \left( {\dfrac{{\dfrac{{3\pi }}{{13}}}}{2}} \right)
Cancelling the same term from numerator and denominator in the angle.
(cos8π13+cos5π13)=2cos(π2)cos(3π26)\Rightarrow \left( {\cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}} \right) = 2\cos \left( {\dfrac{\pi }{2}} \right)\cos \left( {\dfrac{{3\pi }}{{26}}} \right)
Since we know cosπ2=0\cos \dfrac{\pi }{2} = 0
(cos8π13+cos5π13)=2×0×cos(3π26)=0\Rightarrow \left( {\cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}} \right) = 2 \times 0 \times \cos \left( {\dfrac{{3\pi }}{{26}}} \right) = 0 … (iv)
Now we substitute the values from equation (iii) and (iv) in equation (ii)
cos10π13+cos8π13+cos3π13+cos5π13=0+0=0\Rightarrow \cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}} = 0 + 0 = 0
which is equal to the right hand side of the equation.
Hence Proved.

Note: Students many times make mistake of writing the value of cos(8π13)=cos(8π13)\cos ( - \dfrac{{8\pi }}{{13}}) = - \cos (\dfrac{{8\pi }}{{13}}) because they think that negative sign comes out of the angle which is wrong, we always classify if the function is an odd or even function and then find if sign vanishes or comes out. In this case cosine is an even function, so negative sign vanishes.