Solveeit Logo

Question

Question: Prove that 1\. \[\dfrac{{\cos A}}{{1 - \sin A}} = \tan \left( {\dfrac{\pi }{4} + \dfrac{A}{2}} \r...

Prove that
1. cosA1sinA=tan(π4+A2)\dfrac{{\cos A}}{{1 - \sin A}} = \tan \left( {\dfrac{\pi }{4} + \dfrac{A}{2}} \right)
2. sin20sin40sin60sin80=316\sin 20^\circ \sin 40^\circ \sin 60^\circ \sin 80^\circ = \dfrac{3}{{16}}

Explanation

Solution

In this problem they give the trigonometric relation to prove. We are going to prove this problem by using the method, first consider the left hand side and from that we will derive the right hand side.

Formula used: We have used the following formula to derive the right hand side in i),
Algebraic formula,
a2b2=(a+b)(ab){a^2} - {b^2} = (a + b)(a - b)
(a+b)2=a2+2ab+b2{(a + b)^2} = {a^2} + 2ab + {b^2}
Trigonometric formula,
sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1
sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta
cos2θ=cos2θsin2θ\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta
sin θcos θ=tan  θ\dfrac{{\sin {\text{ }}\theta }}{{\cos {\text{ }}\theta }} = \tan \;\theta
tan(a+b)=tan a + tan b1(tan a)(tan b)\tan \left( {a + b} \right) = \dfrac{{\tan {\text{ a + tan b}}}}{{1 - \left( {\tan {\text{ a}}} \right)\left( {\tan {\text{ b}}} \right)}}
We have used the following formula to derive the right hand side in ii),
Trigonometric formula,
2sinxsiny=cos(xy)cos(x+y)2\sin x\sin y = \cos (x - y) - \cos (x + y)
2sinxcosy=sin(x+y)+sin(xy)2\sin x\cos y = \sin (x + y) + \sin (x - y)
sin(θ)=sinθ\sin ( - \theta ) = - \sin \theta

Complete step-by-step answer:
1. We need to prove cosA1sinA=tan(π4+A2)\dfrac{{\cos A}}{{1 - \sin A}} = \tan \left( {\dfrac{\pi }{4} + \dfrac{A}{2}} \right).
Let us consider the L.H.S =cosA1sinA = \dfrac{{\cos A}}{{1 - \sin A}}
We will multiply and divide the same term 1+sinA1 + \sin A, we get
cosA1sinA×1+sinA1+sinA\Rightarrow \dfrac{{\cos A}}{{1 - \sin A}} \times \dfrac{{1 + \sin A}}{{1 + \sin A}}
Simplifying we get,
cosA(1+sinA)(1sinA)(1+sinA)\Rightarrow \dfrac{{\cos A(1 + \sin A)}}{{(1 - \sin A)(1 + \sin A)}}
Using the algebraic formula a2b2=(a+b)(ab){a^2} - {b^2} = (a + b)(a - b) for denominator,
cosA(1+sinA)(1sin2A)\Rightarrow \dfrac{{\cos A(1 + \sin A)}}{{(1 - {{\sin }^2}A)}}
We know, sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1 by using this,
cosA(1+sinA)cos2A\Rightarrow \dfrac{{\cos A(1 + \sin A)}}{{{{\cos }^2}A}}
Simplifying we get,
1+sinAcosA\Rightarrow \dfrac{{1 + \sin A}}{{\cos A}}
By using the sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta to get the required result,
sin2A2+cos2A2+2sinA2cosA2cos2A2sin2A2\Rightarrow \dfrac{{{{\sin }^2}\dfrac{A}{2} + {{\cos }^2}\dfrac{A}{2} + 2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}}{{{{\cos }^2}\dfrac{A}{2} - {{\sin }^2}\dfrac{A}{2}}}
Now, we can use the algebraic formula, (a+b)2=a2+2ab+b2{(a + b)^2} = {a^2} + 2ab + {b^2} and the trigonometric formula,cos2θ=cos2θsin2θ\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta

(sinA2+cosA2)2(cosA2+sinA2)(cosA2sinA2) \Rightarrow \dfrac{{{{(\sin \dfrac{A}{2} + \cos \dfrac{A}{2})}^2}}}{{(\cos \dfrac{A}{2} + \sin \dfrac{A}{2})(\cos \dfrac{A}{2} - \sin \dfrac{A}{2})}}
Cancelling the common terms in numerator and denominator we get,
sinA2+cosA2cosA2sinA2\Rightarrow \dfrac{{\sin \dfrac{A}{2} + \cos \dfrac{A}{2}}}{{\cos \dfrac{A}{2} - \sin \dfrac{A}{2}}}
Dividing denominator and numerator by cosA2\cos \dfrac{A}{2},
sinA2+cosA2cosA2cosA2sinA2cosA2\Rightarrow \dfrac{{\dfrac{{\sin \dfrac{A}{2} + \cos \dfrac{A}{2}}}{{\cos \dfrac{A}{2}}}}}{{\dfrac{{\cos \dfrac{A}{2} - \sin \dfrac{A}{2}}}{{\cos \dfrac{A}{2}}}}}
By using the formula sin θcos θ=tan  θ\dfrac{{\sin {\text{ }}\theta }}{{\cos {\text{ }}\theta }} = \tan \;\theta we get,
tanA2+tanπ41tanA2tanπ4\Rightarrow \dfrac{{\tan \dfrac{A}{2} + \tan \dfrac{\pi }{4}}}{{1 - \tan \dfrac{A}{2}\tan \dfrac{\pi }{4}}}
We know that is tan(a+b)=tan a + tan b1(tan a)(tan b)\tan \left( {a + b} \right) = \dfrac{{\tan {\text{ a + tan b}}}}{{1 - \left( {\tan {\text{ a}}} \right)\left( {\tan {\text{ b}}} \right)}} which gives,
tan(π4+A2)\Rightarrow \tan \left( {\dfrac{\pi }{4} + \dfrac{A}{2}} \right)
=R.H.S.
Hence L.H.S = R.H.S.
cosA1sinA=tan(π4+A2)\therefore \dfrac{{\cos A}}{{1 - \sin A}} = \tan \left( {\dfrac{\pi }{4} + \dfrac{A}{2}} \right)(proved).
2. We need to prove sin20sin40sin60sin80=316\sin 20^\circ \sin 40^\circ \sin 60^\circ \sin 80^\circ = \dfrac{3}{{16}}
L.H.S =
sin20sin40sin60sin80\Rightarrow \sin 20^\circ \sin 40^\circ \sin 60^\circ \sin 80^\circ
Multiply and divide by 22 we get,
12(sin20sin60)(2sin40sin80)\Rightarrow \dfrac{1}{2}(\sin 20^\circ \sin 60^\circ )(2\sin 40^\circ \sin 80^\circ )
We know, 2sinxsiny=cos(xy)cos(x+y)2\sin x\sin y = \cos (x - y) - \cos (x + y) by using,
12(sin20sin60)[cos(8040)cos(80+40)]\Rightarrow \dfrac{1}{2}(\sin 20^\circ \sin 60^\circ )[\cos (80^\circ - 40^\circ ) - \cos (80^\circ + 40^\circ )]
Substituting the value sin60=32\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2},
12(sin2032)(cos40cos120)\Rightarrow \dfrac{1}{2}\left( {\sin 20^\circ \dfrac{{\sqrt 3 }}{2}} \right)\left( {\cos 40^\circ - \cos 120^\circ } \right)
Simplifying we get,
34sin20(cos40+12)\Rightarrow \dfrac{{\sqrt 3 }}{4}\sin 20^\circ \left( {\cos 40^\circ + \dfrac{1}{2}} \right)
Again we can use, 2sinxcosy=sin(x+y)+sin(xy)2\sin x\cos y = \sin (x + y) + \sin (x - y)
382sin20cos40+38sin20\Rightarrow \dfrac{{\sqrt 3 }}{8}2\sin 20^\circ \cos 40^\circ + \dfrac{{\sqrt 3 }}{8}\sin 20^\circ
38[sin(20+40)+sin(2040)]+38sin20\Rightarrow \dfrac{{\sqrt 3 }}{8}\left[ {\sin (20^\circ + 40^\circ ) + \sin (20^\circ - 40^\circ )} \right] + \dfrac{{\sqrt 3 }}{8}\sin 20^\circ
Simplifying we get,
38[sin60+sin(20)]+38sin20\Rightarrow \dfrac{{\sqrt 3 }}{8}\left[ {\sin 60^\circ + \sin ( - 20^\circ )} \right] + \dfrac{{\sqrt 3 }}{8}\sin 20^\circ
Now, sin(θ)=sinθ\sin ( - \theta ) = - \sin \theta
38(sin60sin20)+38sin20\Rightarrow \dfrac{{\sqrt 3 }}{8}\left( {\sin 60^\circ - \sin 20^\circ } \right) + \dfrac{{\sqrt 3 }}{8}\sin 20^\circ
38sin6038sin20+38sin20\Rightarrow \dfrac{{\sqrt 3 }}{8}\sin 60^\circ - \dfrac{{\sqrt 3 }}{8}\sin 20^\circ + \dfrac{{\sqrt 3 }}{8}\sin 20^\circ
Subtracting the terms and substituting the value of sin60=32\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2} we get,
38×32\Rightarrow \dfrac{{\sqrt 3 }}{8} \times \dfrac{{\sqrt 3 }}{2}
316\Rightarrow \dfrac{3}{{16}}
=R.H.S.
L.H.S. = R.H.S.
\therefore Hence, sin20sin40sin60sin80=316\sin 20^\circ \sin 40^\circ \sin 60^\circ \sin 80^\circ = \dfrac{3}{{16}}(Proved).

Note: Sin Cos formulas are based on sides of the right-angled triangle. Sin and Cos are basic trigonometric functions along with tan function, in trigonometry. Sine of angle is equal to the ratio of opposite side and hypotenuse whereas cosine of an angle is equal to ratio of adjacent side and hypotenuse.

sinθ=Opposite sideHypotenuse{\text{sin}} \theta = \dfrac{{{\text{Opposite side}}}}{{{\text{Hypotenuse}}}}
cosθ=AdjacentHypotenuse{\text{cos}} \theta = \dfrac{{{\text{Adjacent}}}}{{{\text{Hypotenuse}}}}
In mathematics, the trigonometric functions are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. The most widely used trigonometric functions are the sine, the cosine, and the tangent.