Solveeit Logo

Question

Question: Prove that: \({1^2}.{C_1} + {2^2}.{C_2} + {3^2}.{C_3} + {\text{ }} \ldots {n^2}.{C_n} = n\left( {n +...

Prove that: 12.C1+22.C2+32.C3+ n2.Cn=n(n+1)2n2{1^2}.{C_1} + {2^2}.{C_2} + {3^2}.{C_3} + {\text{ }} \ldots {n^2}.{C_n} = n\left( {n + 1} \right){2^{n - 2}}

Explanation

Solution

Hint: Use Binomial expansion of (1+x)n{(1 + x)^n} and then differentiate it.

To prove: 12.C1+22.C2+32.C3+ n2.Cn=n(n+1)2n2{1^2}.{C_1} + {2^2}.{C_2} + {3^2}.{C_3} + {\text{ }} \ldots {n^2}.{C_n} = n\left( {n + 1} \right){2^{n - 2}}
We know that, Binomial expansion of (1+x)n{(1 + x)^n} is C0+C1x+C2x2+ Cnxn=(1+x)n{C_0} + {C_1}x + {C_2}{x^2} + {\text{ }} \ldots {C_n}{x^n} = {\left( {1 + x} \right)^n}
Differentiating the expansion of (1+x)n{\left( {1 + x} \right)^n} with respect to xx, we get
n(1+x)n1=C1+2C2x+3C2x2++nCnxn1 (1)n{\left( {1 + x} \right)^{n - 1}} = {C_1} + 2{C_2}x + 3{C_2}{x^2} + \ldots \ldots + n{C_n}{x^{n - 1}}{\text{ }} \ldots \left( 1 \right)
Keeping in view the form of question we multiply both sides of (1)\left( 1 \right) by xx, we get
nx(1+x)n1=C1x+2C2x2+3C2x3++nCnxn (2)nx{\left( {1 + x} \right)^{n - 1}} = {C_1}x + 2{C_2}{x^2} + 3{C_2}{x^3} + \ldots \ldots + n{C_n}{x^n}{\text{ }} \ldots \left( 2 \right)
Now differentiating equation (2)\left( 2 \right) with respect to xx, we get
n[1.(1+x)n1+x.(n1)(1+x)n2]=C1+22C2x+32C3x2++n2C2xn1 (3)n\left[ {1.{{\left( {1 + x} \right)}^{n - 1}} + x.\left( {n - 1} \right){{\left( {1 + x} \right)}^{n - 2}}} \right] = {C_1} + {2^2}{C_2}x + {3^2}{C_3}{x^2} + \ldots \ldots + {n^2}{C_2}{x^{n - 1}}{\text{ }} \ldots \left( 3 \right)
Now put x=1x = 1in equation (3)\left( 3 \right), we get
n[2n1+(n1)(2n2)] = 12C1+22C2+32C3++n2Cn n2n2[2+n1] = 12C1+22C2+32C3++n2Cn n(n+1)2n2 = 12C1+22C2+32C3++n2Cn  \Rightarrow n\left[ {{2^{n - 1}} + \left( {n - 1} \right)\left( {{2^{n - 2}}} \right)} \right]{\text{ }} = {\text{ }}{{\text{1}}^2}{C_1} + {2^2}{C_2} + {3^2}{C_3} + \ldots \ldots + {n^2}{C_n} \\\ \Rightarrow n{2^{n - 2}}\left[ {2 + n - 1} \right]{\text{ }} = {\text{ }}{{\text{1}}^2}{C_1} + {2^2}{C_2} + {3^2}{C_3} + \ldots \ldots + {n^2}{C_n} \\\ \Rightarrow n\left( {n + 1} \right){2^{n - 2}}{\text{ }} = {\text{ }}{{\text{1}}^2}{C_1} + {2^2}{C_2} + {3^2}{C_3} + \ldots \ldots + {n^2}{C_n} \\\
Hence Proved.

Note: In these types of problems, the most important part is to recognize the series and bring it in terms of binomial expansion and then try to match the coefficients of the series.