Solveeit Logo

Question

Question: Prove that \[1.2 + 2.3 + .......n(n + 1) = \dfrac{{n(n + 1)(n + 2)}}{3}\]​ in mathematical induction...

Prove that 1.2+2.3+.......n(n+1)=n(n+1)(n+2)31.2 + 2.3 + .......n(n + 1) = \dfrac{{n(n + 1)(n + 2)}}{3}​ in mathematical induction.

Explanation

Solution

Here we are given a typical mathematical induction problem to deal with. First we need to check if the expression is true for n=1n = 1, then we need to consider that it is true for n=k  n = k\;and then need to check if it’s true for n=k+1n = k + 1, if true for n=k+1n = k + 1 we can say that the equations holds true.

Complete step-by-step answer:
We shall prove the result by principle of mathematical induction.
p(n)=1.2+2.3+.......n(n+1)=n(n+1)(n+2)3p(n) = 1.2 + 2.3 + .......n(n + 1) = \dfrac{{n(n + 1)(n + 2)}}{3}
First on checking for n=1n = 1,
We have,
LHS: 1.2=21.2 = 2
RHS: n(n+1)(n+2)3\dfrac{{n(n + 1)(n + 2)}}{3}
On substituting the value of n we get,

=1(1+1)(1+2)3 =1.2.33 =2.  = \dfrac{{1(1 + 1)(1 + 2)}}{3} \\\ = \dfrac{{1.2.3}}{3} \\\ = 2. \\\

As LHS = RHS{\text{LHS = RHS}}
Hence p(n) is true for n=1.
Now,
Let us assume the result is true for n=k  n = k\; i.e.,
p(k)=1.2+2.3+.....k(k+1)=k×(k+1)×(k+2)3  p(k) = 1.2 + 2.3 + .....k\left( {k + 1} \right) = \dfrac{{k \times \left( {k + 1} \right) \times \left( {k + 2} \right)}}{3}\;
We shall prove that p(n) is true for n=k+1n = k + 1.
that is, to prove p(k+1)=1.2+2.3.....+k(k+1)+(k+1)(k+2)=(k+1)(k+2)(k+3)3p(k + 1) = 1.2 + 2.3..... + k\left( {k + 1} \right) + \left( {k + 1} \right)\left( {k + 2} \right) = \dfrac{{\left( {k + 1} \right)\left( {k + 2} \right)\left( {k + 3} \right)}}{3}
Consider LHS: 1.2+2.3.....+k(k+1)+(k+1)(k+2)1.2 + 2.3..... + k\left( {k + 1} \right) + \left( {k + 1} \right)\left( {k + 2} \right)
As, p(k) is true we have p(k)=1.2+2.3+.....k(k+1)=k×(k+1)×(k+2)3  p(k) = 1.2 + 2.3 + .....k\left( {k + 1} \right) = \dfrac{{k \times \left( {k + 1} \right) \times \left( {k + 2} \right)}}{3}\;,
Hence on substituting the above value we get,
=k×(k+1)×(k+2)3+(k+1)(k+2)= \dfrac{{k \times \left( {k + 1} \right) \times \left( {k + 2} \right)}}{3} + \left( {k + 1} \right)\left( {k + 2} \right)
Taking common, (k+1)(k+2)\left( {k + 1} \right)\left( {k + 2} \right), we get,
=(k+1)(k+2)[k3+1]= \left( {k + 1} \right)\left( {k + 2} \right)[\dfrac{k}{3} + 1]
On simplifying we get,
=(k+1)(k+2)[k+33]= \left( {k + 1} \right)\left( {k + 2} \right)[\dfrac{{k + 3}}{3}]
=[(k+1)(k+2)(k+3)3]= [\dfrac{{\left( {k + 1} \right)\left( {k + 2} \right)(k + 3)}}{3}]
=RHS.
Hence the p(n) holds for n=k+1n = k + 1.
As, p(n) is true for n=1n = 1, n=k  n = k\;and n=k+1n = k + 1, hence we can say that p(n){\text{p(n)}} is truenN\forall n \in N.
Hence, proved.

Note: Mathematical induction is a mathematical proof technique. It is essentially used to prove that a statement P(n)P\left( n \right)holds for every natural number n  =  0,  1,  2,  3,  n\; = \;0,\;1,\;2,\;3,\;. . . ; that is, the overall statement is a sequence of infinitely many cases P(0),  P(1),  P(2),  P(3),P\left( 0 \right),\;P\left( 1 \right),\;P\left( 2 \right),\;P\left( 3 \right),. . . . . We generally assume that P(n)P\left( n \right)is true for n=k  n = k\;and using this we prove that P(n)P\left( n \right) is true for n=k+1n = k + 1.