Question
Mathematics Question on Inverse Trigonometric Functions
Prove tan−1x=21cos−1(1+x1−x),x∈[0,1]
Answer
Let x=tan2θ.
Then x=tanθ.=>θ=tan−1x.
so 1+x1−x = 1+tan2θ1−tan2θ =cos2θ.
Now we have,
RHS=21cos−11+x1−x=21cos−1(cos2θ)=21×2θ=θ=tan−1x=LHS.