Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

Prove: tan16316=sin1513+cos135tan^{-1} \frac {63}{16} = sin^{-1} \frac {5}{13} + cos^{-1}\frac 35

Answer

Let sin-1513\frac {5}{13} = x. then sin x=513\frac {5}{13}     \impliescosx=1213\frac {12}{13}
tan x = 512\frac {5}{12}     \impliesx = tan-1512\frac {5}{12}
sin-1513\frac {5}{13} = tan-1512\frac {5}{12} …..…… (1)
Let cos-135\frac {3}{5} = y. then cos y=35\frac {3}{5}.    \impliessin y = 45\frac 45.
tan y=\frac 43$$\impliesy = tan-143\frac 43.
therefore cos-135\frac {3}{5} = tan-143\frac {4}{3} ……….. (2) Using (1) and (2),
we have:
R.H.S = sin-1513\frac {5}{13}+cos-135\frac {3}{5}
= tan-1512\frac {5}{12} + tan-143\frac {4}{3}
= tan-1512+431512.43\frac {\frac {5}{12}+ \frac 43}{1-\frac {5}{12}. \frac 43 } [tan-1 x+tan-1 y]
= tan-1 x+y1xy\frac {x+y}{1-xy}
= tan-16316\frac {63}{16}
= L.H.S