Question
Mathematics Question on Inverse Trigonometric Functions
Prove: tan−11663=sin−1135+cos−153
Answer
Let sin-1135 = x. then sin x=135 ⟹cosx=1312
tan x = 125 ⟹x = tan-1125
sin-1135 = tan-1125 …..…… (1)
Let cos-153 = y. then cos y=53.⟹sin y = 54.
tan y=\frac 43$$\impliesy = tan-134.
therefore cos-153 = tan-134 ……….. (2) Using (1) and (2),
we have:
R.H.S = sin-1135+cos-153
= tan-1125 + tan-134
= tan-11−125.34125+34 [tan-1 x+tan-1 y]
= tan-1 1−xyx+y
= tan-11663
= L.H.S