Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

Prove tan1211+tan1724=tan112\tan^{-1}\frac{2}{11}+\tan^{-1}\frac{7}{24}=\tan^{-1}\frac{1}{2}

Answer

To prove: tan1211+tan1724=tan112\tan^{-1}\frac{2}{11}+\tan^{-1}\frac{7}{24}=\tan^{-1}\frac{1}{2}

LHS= tan1211+tan1724\tan^{-1}\frac{2}{11}+\tan^{-1}\frac{7}{24}

= tan1211+7241211+724\tan^{-1}\frac{\frac{2}{11}+\frac{7}{24}}{1-\frac{2}{11}+\frac{7}{24}} [tan1x+tan1y=tan1x+y1xy]\bigg[\tan^{-1}x+\tan^{-1}y=\tan^{-1}\frac{x+y}{1-xy}\bigg]

= tan1487726414=tan1125250=tan112=R.H.S.\tan^{-1}\frac{48-77}{264-14}=\tan^{-1}\frac{125}{250}=\tan^{-1}\frac{1}{2}=R.H.S.