Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

Prove: tan115+tan117+tan113+tan118=π4tan^{-1}\frac 15+tan^{-1}\frac 17+tan^{-1}\frac 13+tan^{-1}\frac 18=\frac {\pi}{4}

Answer

L.H.S = tan-115\frac 15 + tan-117\frac 17 + tan-113\frac 13 + tan-118\frac 18
= tan-1(15+17115.17)(\frac {\frac 15+ \frac 17}{1-\frac 15. \frac 17}) + tan-1(13+18113.18)(\frac {\frac 13+ \frac 18}{1-\frac 13. \frac 18}) [tan-1x+tan-1y = tan-1x+y1xy\frac {x+y}{1-xy}]
= tan-11234\frac {12}{34} + tan-11123\frac {11}{23}
= tan-1617\frac {6}{17} + tan-11123\frac {11}{23}
= tan-1(617+11231617.1123)(\frac {\frac {6}{17}+ \frac {11}{23}}{1-\frac {6}{17}. \frac {11}{23}})
= tan-1325325\frac {325}{325}
= tan-1(1)
= π4\frac {\pi}{4}
= R.H.S