Question
Mathematics Question on Inverse Trigonometric Functions
Prove: tan−151+tan−171+tan−131+tan−181=4π
Answer
L.H.S = tan-151 + tan-171 + tan-131 + tan-181
= tan-1(1−51.7151+71) + tan-1(1−31.8131+81) [tan-1x+tan-1y = tan-11−xyx+y]
= tan-13412 + tan-12311
= tan-1176 + tan-12311
= tan-1(1−176.2311176+2311)
= tan-1325325
= tan-1(1)
= 4π
= R.H.S