Question
Mathematics Question on Inverse Trigonometric Functions
Prove tan-1(√1+x+√1−x√1+x−√1−x=4π−21cos−1x,−√21≤x≤1.[Hint: putx = cos 2θ]
Answer
Put x=cos2θ so that θ=21cos−1x.Then we have:
LHS=tan−1(√1+x+√1−x)√1+x−√1−x
=tan−1(√1+cos2θ+√1−cos2θ√1+cos2θ−√1−cos2θ)
=tan−1(√2cos2θ+√2sin2θ)√2cos2θ−√2sin2θ
=tan−1(√2cosθ+√2sinθ√2cosθ−√2sinθ)
=tan−1(cosθ+sinθcosθ−sinθ)=tan−1(1+tanθ1−tanθ)
=tan−1(1)−tan−1(tanθ)=4π−θ=4π−21cos−1x=RHS