Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

Prove tan-1(1+x1x1+x+1x=π412cos1x,12x1.(\frac{√1+x-√1-x}{√1+x+√1-x}=\frac{π}{4}-\frac{1}{2}cos^-1x,-\frac{1}{√2}≤x≤1.[Hint: putx = cos 2θ]

Answer

Put x=cos2θ so that θ=12cos1\frac{1}{2}cos-1x.Then we have:
LHS=tan1(1+x1x1+x+1x)LHS=tan^-1(\frac{√1+x-√1-x}{√1+x+√1-x)}
=tan1(1+cos2θ1cos2θ1+cos2θ+1cos2θ)=tan^-1(\frac{√1+cos2θ-√1-cos2θ}{√1+cos2θ+√1-cos2θ})
=tan1(2cos2θ2sin2θ2cos2θ+2sin2θ)=tan^-1(\frac{√2cos^2θ-√2sin^2θ}{√2cos^2θ+√2sin^2θ)}
=tan1(2cosθ2sinθ2cosθ+2sinθ)=tan^-1(\frac{√2cosθ-√2sinθ}{√2cosθ+√2sinθ})
=tan1(cosθsinθcosθ+sinθ)=tan1(1tanθ1+tanθ)=tan^-1(\frac{cosθ-sinθ}{cosθ+sinθ})=tan-1(\frac{1-tanθ}{1+tanθ})
=tan1(1)tan1(tanθ)=π4θ=π412cos1x=RHS=tan^-1(1)-tan^-1(tanθ)= \frac{π}{4}-θ=\frac{π}{4}-\frac{1}{2}cos^-1x=RHS