Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

Prove: sin1817+sin135=tan17736sin^{-1} \frac {8}{17} + sin^{-1} \frac 35=tan^{-1} \frac {77}{36}

Answer

Let sin-1817\frac {8}{17} = x. Then, sin x = \frac {8}{17}$$\impliescos x =1(817)2\sqrt {1-(\frac {8}{17})^2} = 225289\sqrt {\frac {225}{289}}=1517\frac {15}{17}.
therefore tan x = 815\frac {8}{15}     \impliesx = tan-1815\frac {8}{15}
so sin-1817\frac {8}{17} = tan-1815\frac {8}{15} …...…. (1)
Now let sin-135\frac {3}{5} = y Then sin y=35\frac {3}{5}.    \impliescos y=1(35)2\sqrt {1-(\frac {3}{5})^2} = 1625\sqrt {\frac {16}{25}} = 45\frac {4}{5}.
tan y = 34\frac {3}{4}, y= tan-134\frac {3}{4}
therefore sin-135\frac {3}{5} = tan-134\frac {3}{4} .……….. (2)
Now, we have:
LHS= sin-1817\frac {8}{17} + sin-135\frac {3}{5}
=tan-1 815\frac {8}{15} + tan-134\frac {3}{4} [using(1) and (2)]
=tan-1815+341815.34\frac {\frac {8}{15}+ \frac 3 4}{1-\frac {8}{15}. \frac 3 4 }
=tan-17736\frac {77}{36}
=RHS