Question
Mathematics Question on Inverse Trigonometric Functions
Prove: sin−1178+sin−153=tan−13677
Answer
Let sin-1178 = x. Then, sin x = \frac {8}{17}$$\impliescos x =1−(178)2 = 289225=1715.
therefore tan x = 158 ⟹x = tan-1158
so sin-1178 = tan-1158 …...…. (1)
Now let sin-153 = y Then sin y=53.⟹cos y=1−(53)2 = 2516 = 54.
tan y = 43, y= tan-143
therefore sin-153 = tan-143 .……….. (2)
Now, we have:
LHS= sin-1178 + sin-153
=tan-1 158 + tan-143 [using(1) and (2)]
=tan-11−158.43158+43
=tan-13677
=RHS