Solveeit Logo

Question

Question: Prove: \(\left( \dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A} \right)={{\left( \dfrac{1-\tan A}{1-\cot ...

Prove: (1+tan2A1+cot2A)=(1tanA1cotA)2=tan2A\left( \dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A} \right)={{\left( \dfrac{1-\tan A}{1-\cot A} \right)}^{2}}={{\tan }^{2}}A .

Explanation

Solution

Useful Trigonometric identities. With the help of given identities we will be able to prove the given statement.
sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1
tan2θ+1=sec2θ{{\tan }^{2}}\theta +1={{\sec }^{2}}\theta
1+cot2θ=csc2θ1+{{\cot }^{2}}\theta ={{\csc }^{2}}\theta
tanθ=sinθcosθ\tan \theta =\dfrac{sin\theta }{\cos \theta }
cotθ=cosθsinθ\cot \theta =\dfrac{\cos \theta }{\sin \theta }
cscθ=1sinθ\csc \theta =\dfrac{1}{\sin \theta }
secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta }
cotθ=1tanθ\cot \theta =\dfrac{1}{\tan \theta }

Complete step-by-step answer:
Let's consider each of the expressions one by one:
LHS = (1+tan2A1+cot2A)\left( \dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A} \right)
Using the identities tan2θ+1=sec2θ{{\tan }^{2}}\theta +1={{\sec }^{2}}\theta and 1+cot2θ=csc2θ1+{{\cot }^{2}}\theta ={{\csc }^{2}}\theta , we get:
1+tan2A1+cot2A=sec2Acsc2A\dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{{{\sec }^{2}}A}{{{\csc }^{2}}A}
We know that secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta } and cscθ=1sinθ\csc \theta =\dfrac{1}{\sin \theta } , therefore:
\Rightarrow sec2Acsc2A=(1cos2A)(1sin2A)\dfrac{{{\sec }^{2}}A}{{{\csc }^{2}}A}=\dfrac{\left( \dfrac{1}{{{\cos }^{2}}A} \right)}{\left( \dfrac{1}{{{\sin }^{2}}A} \right)}
In order to divide by a fraction, we have to multiply with the fractions reciprocal:
\Rightarrow (1cos2A)(1sin2A)=(1cos2A)×(sin2A1)=sin2Acos2A=tan2A\dfrac{\left( \dfrac{1}{{{\cos }^{2}}A} \right)}{\left( \dfrac{1}{{{\sin }^{2}}A} \right)}=\left( \dfrac{1}{{{\cos }^{2}}A} \right)\times \left( \dfrac{{{\sin }^{2}}A}{1} \right)=\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}={{\tan }^{2}}A . Hence proved.
And, RHS = (1tanA1cotA)2{{\left( \dfrac{1-\tan A}{1-\cot A} \right)}^{2}}
Using tanθ=sinθcosθ\tan \theta =\dfrac{sin\theta }{\cos \theta } and cotθ=cosθsinθ\cot \theta =\dfrac{\cos \theta }{\sin \theta } , we can write it as:
(1tanA1cotA)2=(1sinAcosA1cosAsinA)2{{\left( \dfrac{1-\tan A}{1-\cot A} \right)}^{2}}={{\left( \dfrac{1-\dfrac{\sin A}{\cos A}}{1-\dfrac{\cos A}{\sin A}} \right)}^{2}}
On equating the denominators and subtracting, we have:
\Rightarrow (1sinAcosA1cosAsinA)2=(cosAsinAcosAsinAcosAsinA)2=(cosAsinAcosA×sinAsinAcosA)2{{\left( \dfrac{1-\dfrac{\sin A}{\cos A}}{1-\dfrac{\cos A}{\sin A}} \right)}^{2}}={{\left( \dfrac{\dfrac{\cos A-\sin A}{\cos A}}{\dfrac{\sin A-\cos A}{\sin A}} \right)}^{2}}={{\left( \dfrac{\cos A-\sin A}{\cos A}\times \dfrac{\sin A}{\sin A-\cos A} \right)}^{2}}
Since, tanθ=sinθcosθ\tan \theta =\dfrac{sin\theta }{\cos \theta } and (cos A - sin A) = -(sin A - cos A), we can rewrite the expression as:
\Rightarrow [sinAcosA×(1)(sinAcosA)(sinAcosA)]2=[tanA×(1)]2=tan2A{{\left[ \dfrac{\sin A}{\cos A}\times \dfrac{(-1)(\sin A-\cos A)}{(\sin A-\cos A)} \right]}^{2}}={{[\tan A\times (-1)]}^{2}}={{\tan }^{2}}A . Hence proved.

Note: In a right-angled triangle with length of the side opposite to angle θ as perpendicular (P), base (B) and hypotenuse (H):
sinθ=PH,cosθ=BH,tanθ=PB\sin \theta =\dfrac{P}{H},\cos \theta =\dfrac{B}{H},\tan \theta =\dfrac{P}{B}
P2+B2=H2{{P}^{2}}+{{B}^{2}}={{H}^{2}} (Pythagoras' Theorem)
The identities sin2θ+cos2θ=1{{\sin}^{2}}\theta +{{\cos }^{2}}\theta =1 , tan2θ+1=sec2θ{{\tan }^{2}}\theta +1={{\sec }^{2}}\theta and 1+cot2θ=csc2θ1+{{\cot }^{2}}\theta ={{\csc }^{2}}\theta are equivalent to each other and they are a direct result of the Pythagoras' theorem.