Question
Question: Prove: \(\left( \dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A} \right)={{\left( \dfrac{1-\tan A}{1-\cot ...
Prove: (1+cot2A1+tan2A)=(1−cotA1−tanA)2=tan2A .
Solution
Useful Trigonometric identities. With the help of given identities we will be able to prove the given statement.
sin2θ+cos2θ=1
tan2θ+1=sec2θ
1+cot2θ=csc2θ
tanθ=cosθsinθ
cotθ=sinθcosθ
cscθ=sinθ1
secθ=cosθ1
cotθ=tanθ1
Complete step-by-step answer:
Let's consider each of the expressions one by one:
LHS = (1+cot2A1+tan2A)
Using the identities tan2θ+1=sec2θ and 1+cot2θ=csc2θ , we get:
1+cot2A1+tan2A=csc2Asec2A
We know that secθ=cosθ1 and cscθ=sinθ1 , therefore:
⇒ csc2Asec2A=(sin2A1)(cos2A1)
In order to divide by a fraction, we have to multiply with the fractions reciprocal:
⇒ (sin2A1)(cos2A1)=(cos2A1)×(1sin2A)=cos2Asin2A=tan2A . Hence proved.
And, RHS = (1−cotA1−tanA)2
Using tanθ=cosθsinθ and cotθ=sinθcosθ , we can write it as:
(1−cotA1−tanA)2=1−sinAcosA1−cosAsinA2
On equating the denominators and subtracting, we have:
⇒ 1−sinAcosA1−cosAsinA2=sinAsinA−cosAcosAcosA−sinA2=(cosAcosA−sinA×sinA−cosAsinA)2
Since, tanθ=cosθsinθ and (cos A - sin A) = -(sin A - cos A), we can rewrite the expression as:
⇒ [cosAsinA×(sinA−cosA)(−1)(sinA−cosA)]2=[tanA×(−1)]2=tan2A . Hence proved.
Note: In a right-angled triangle with length of the side opposite to angle θ as perpendicular (P), base (B) and hypotenuse (H):
sinθ=HP,cosθ=HB,tanθ=BP
P2+B2=H2 (Pythagoras' Theorem)
The identities sin2θ+cos2θ=1 , tan2θ+1=sec2θ and 1+cot2θ=csc2θ are equivalent to each other and they are a direct result of the Pythagoras' theorem.