Solveeit Logo

Question

Question: Prove It - \[\tan \phi + 2\tan 2\phi + 4\tan 4\phi + 8\cot 8\phi = \cot \phi \]?...

Prove It - tanϕ+2tan2ϕ+4tan4ϕ+8cot8ϕ=cotϕ\tan \phi + 2\tan 2\phi + 4\tan 4\phi + 8\cot 8\phi = \cot \phi ?

Explanation

Solution

We need to prove tanϕ+2tan2ϕ+4tan4ϕ+8cot8ϕ=cotϕ\tan \phi + 2\tan 2\phi + 4\tan 4\phi + 8\cot 8\phi = \cot \phi . For this, we will mainly use the trigonometric identity tan2θ=2tanθ1tan2θ\tan 2\theta = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}. Using this identity again and again from different angles, we will keep simplifying the given expression and then finally reach our answer. Also, we will be using cotθ=1tanθ\cot \theta = \dfrac{1}{{\tan \theta }}.

Complete step-by-step answer:
We need to prove tanϕ+2tan2ϕ+4tan4ϕ+8cot8ϕ=cotϕ\tan \phi + 2\tan 2\phi + 4\tan 4\phi + 8\cot 8\phi = \cot \phi .
Let us consider,
tanϕ+2tan2ϕ+4tan4ϕ+8cot8ϕ\tan \phi + 2\tan 2\phi + 4\tan 4\phi + 8\cot 8\phi
We know, cotθ=1tanθ\cot \theta = \dfrac{1}{{\tan \theta }}. So, we can write 8cot8ϕ8\cot 8\phi as 8tan8ϕ\dfrac{8}{{\tan 8\phi }}. Writing this, we get our left hand side to be equal to
=tanϕ+2tan2ϕ+4tan4ϕ+8tan8ϕ= \tan \phi + 2\tan 2\phi + 4\tan 4\phi + \dfrac{8}{{\tan 8\phi }}
Now, using tan2θ=2tanθ1tan2θ\tan 2\theta = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }} on the last term, we get
=tanϕ+2tan2ϕ+4tan4ϕ+82tan4ϕ1tan24ϕ= \tan \phi + 2\tan 2\phi + 4\tan 4\phi + \dfrac{8}{{\dfrac{{2\tan 4\phi }}{{1 - {{\tan }^2}4\phi }}}}
Now, using the property abc=acb\dfrac{a}{{\dfrac{b}{c}}} = \dfrac{{ac}}{b}, we get
=tanϕ+2tan2ϕ+4tan4ϕ+8(1tan24ϕ)2tan4ϕ= \tan \phi + 2\tan 2\phi + 4\tan 4\phi + \dfrac{{8\left( {1 - {{\tan }^2}4\phi } \right)}}{{2\tan 4\phi }}
Now cancelling some term from numerator and denominator, we get
=tanϕ+2tan2ϕ+4tan4ϕ+4(1tan24ϕ)tan4ϕ= \tan \phi + 2\tan 2\phi + 4\tan 4\phi + \dfrac{{4\left( {1 - {{\tan }^2}4\phi } \right)}}{{\tan 4\phi }}
Now, taking LCM of the last two terms and opening the brackets, we get
=tanϕ+2tan2ϕ+4tan24ϕ+44tan24ϕtan4ϕ= \tan \phi + 2\tan 2\phi + \dfrac{{4{{\tan }^2}4\phi + 4 - 4{{\tan }^2}4\phi }}{{\tan 4\phi }}
Now, cancelling out 4tan24ϕ4{\tan ^2}4\phi from the numerator, we get
=tanϕ+2tan2ϕ+4tan4ϕ= \tan \phi + 2\tan 2\phi + \dfrac{4}{{\tan 4\phi }}
Again using tan2θ=2tanθ1tan2θ\tan 2\theta = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }} in the last term, we get
=tanϕ+2tan2ϕ+42tan2ϕ1tan22ϕ= \tan \phi + 2\tan 2\phi + \dfrac{4}{{\dfrac{{2\tan 2\phi }}{{1 - {{\tan }^2}2\phi }}}}
Using the property abc=acb\dfrac{a}{{\dfrac{b}{c}}} = \dfrac{{ac}}{b}, we have
=tanϕ+2tan2ϕ+4(1tan22ϕ)2tan2ϕ= \tan \phi + 2\tan 2\phi + \dfrac{{4\left( {1 - {{\tan }^2}2\phi } \right)}}{{2\tan 2\phi }}
Cancelling some terms from the numerator and denominator, we get
=tanϕ+2tan2ϕ+2(1tan22ϕ)tan2ϕ= \tan \phi + 2\tan 2\phi + \dfrac{{2\left( {1 - {{\tan }^2}2\phi } \right)}}{{\tan 2\phi }}
Now, taking LCM of the last two terms and opening the brackets, we get
=tanϕ+2tan22ϕ+22tan22ϕtan2ϕ= \tan \phi + \dfrac{{2{{\tan }^2}2\phi + 2 - 2{{\tan }^2}2\phi }}{{\tan 2\phi }}
Now, cancelling 2tan22ϕ2{\tan ^2}2\phi from the numerator, we get
=tanϕ+2tan2ϕ= \tan \phi + \dfrac{2}{{\tan 2\phi }}
Again using tan2θ=2tanθ1tan2θ\tan 2\theta = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}, we get our left hand side to be equal to
=tanϕ+22tanϕ1tan2ϕ= \tan \phi + \dfrac{2}{{\dfrac{{2\tan \phi }}{{1 - {{\tan }^2}\phi }}}}
Using abc=acb\dfrac{a}{{\dfrac{b}{c}}} = \dfrac{{ac}}{b}, we have
=tanϕ+2(1tan2ϕ)2tanϕ= \tan \phi + \dfrac{{2\left( {1 - {{\tan }^2}\phi } \right)}}{{2\tan \phi }}
Now, cancelling out 22 from the numerator and denominator, we get
=tanϕ+(1tan2ϕ)tanϕ= \tan \phi + \dfrac{{\left( {1 - {{\tan }^2}\phi } \right)}}{{\tan \phi }}
Now, taking LCM and opening the brackets, we get
=tan2ϕ+1tan2ϕtanϕ= \dfrac{{{{\tan }^2}\phi + 1 - {{\tan }^2}\phi }}{{\tan \phi }}
Cancelling tan2ϕ{\tan ^2}\phi from the numerator, Left Hand Side becomes
=1tanϕ= \dfrac{1}{{\tan \phi }}
We know, cotϕ=1tanϕ\cot \phi = \dfrac{1}{{\tan \phi }}. So, using this Left Hand Side becomes
1tanϕ=cotϕ\Rightarrow \dfrac{1}{{\tan \phi }} = \cot \phi
Hence, we get Left Hand Side = Right Hand Side =cotϕ= \cot \phi

Note: We can also solve this problem using the formula cotϕtanϕ=2cot2ϕ\cot \phi - \tan \phi = 2\cot 2\phi . For that, we will first bring all our terms to the right hand side and then apply this formula first on the some terms according to the given conditions and then to the other terms and prove it equal to zero i.e. we need to prove RHSLHS=0RHS - LHS = 0 which implies LHS=RHSLHS = RHS.